
29

Security Assessment of Dynamically Obfuscated Scan Chain

Against Oracle-guided Attacks

M SAZADUR RAHMAN, ADIB NAHIYAN, and FAHIM RAHMAN, University of Florida, USA

SAVERIO FAZZARI, Booz Allen Hamilton, USA

KENNETH PLAKS, Defense Advanced Research Projects Agency, USA

FARIMAH FARAHMANDI, DOMENIC FORTE, and MARK TEHRANIPOOR, University of

Florida, USA

Logic locking has emerged as a promising solution to protect integrated circuits against piracy and tampering.

However, the security provided by existing logic locking techniques is often thwarted by Boolean satisfiabil-

ity (SAT)-based oracle-guided attacks. Criteria for successful SAT attacks on locked circuits include: (i) the

circuit under attack is fully combinational, or (ii) the attacker has scan chain access. To address the threat

posed by SAT-based attacks, we adopt the dynamically obfuscated scan chain (DOSC) architecture and il-

lustrate its resiliency against the SAT attacks when inserted into the scan chain of an obfuscated design.

We demonstrate, both mathematically and experimentally, that DOSC exponentially increases the resiliency

against key extraction by SAT attack and its variants. Our results show that the mathematical estimation of

attack complexity correlates to the experimental results with an accuracy of 95% or better. Along with the

formal proof, we model DOSC architecture to its equivalent combinational circuit and perform SAT attack to

evaluate its resiliency empirically. Our experiments demonstrate that SAT attack on DOSC-inserted bench-

mark circuits timeout at minimal test time overhead, and while DOSC requires less than 1% area and power

overhead.

CCS Concepts: • Security and privacy → Security in hardware; Hardware security implementation;

Hardware-based security protocols;

Additional Key Words and Phrases: SAT attack, logic locking, scan obfuscation, mathematical model for sat-

isfiability, hardware obfuscation

ACM Reference format:

M Sazadur Rahman, Adib Nahiyan, Fahim Rahman, Saverio Fazzari, Kenneth Plaks, Farimah Farahmandi,

Domenic Forte, and Mark Tehranipoor. 2021. Security Assessment of Dynamically Obfuscated Scan Chain

Against Oracle-guided Attacks. ACM Trans. Des. Autom. Electron. Syst. 26, 4, Article 29 (March 2021), 27

pages.

https://doi.org/10.1145/3444960

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA) (Grant No.

FA8650-18-1-7821). Disclaimer: The views, opinions, and/or findings expressed are those of the author and should not be

interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Authors’ addresses: M S. Rahman, A. Nahiyan, and F. Rahman, University of Florida, Gainesville, Florida; emails: {moham-

mad.rahman, adib1991}@ufl.edu, fahimrahman@ece.ufl.edu; S. Fazzari, Booz Allen Hamilton, Arlington, Virginia; email:

saverio.fazzari.ctr@darpa.mil; K. Plaks, Defense Advanced Research Projects Agency, Arlington, Virginia; email: kenneth.

plaks@darpa.mil; F. Farahmandi, D. Forte, and M. Tehranipoor, University of Florida, Gainesville, Florida; emails: {farimah,

dforte, tehranipoor}@ece.ufl.edu.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the

United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for government purposes only.

© 2021 Association for Computing Machinery.

1084-4309/2021/03-ART29 $15.00

https://doi.org/10.1145/3444960

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

https://doi.org/10.1145/3444960
https://doi.org/10.1145/3444960

29:2 M S. Rahman et al.

1 INTRODUCTION

Due to the ever-increasing costs of maintaining a cutting-edge semiconductor fabrication facility,
there has been a shift in the integrated circuit (IC) design flow giving rise to fabless semiconductor
companies, third party design houses, and contract foundries. This trend has accelerated innova-
tion, lowered cost, and reduced time-to-market. However, with many entities involved in design,
manufacturing, integration, and distribution located across the globe, original intellectual prop-
erty (IP) owners can no longer monitor the entire process. As a result, they are now facing threats
of IP theft/piracy, tampering, counterfeiting, reverse engineering, and IC overproduction [1]. From
a global perspective, where IP protection laws (and the degree of their enforcement) vastly vary
from one country to another, IP protection can no longer be limited to passive methods such as
patents, copyrights, and watermarking [2] that merely deter these threats.

To address these concerns, researchers have proposed several design-for-trust techniques, e.g.,
IP encryption [3], logic locking [4, 5], state-space obfuscation [6], IC camouflaging [7], split man-
ufacturing [8], and split testing [9]. In addition, the IEEE IP encryption standard (IEEE-P1735)
was developed to protect the confidentiality of IPs and has been widely adopted by semiconduc-
tor industry [3]. However, logic-locking [4, 12, 13] has been studied most widely, since the others
possess several critical vulnerabilities [10, 11].

Logic locking, also known as logic obfuscation, inserts additional gates that are controlled by
a key into the design to hide original functionality and prevent reverse engineering, piracy, over-
production, and tampering. The proper function of the design is ensured once correct unlocking
key inputs are provided from a tamper-proof memory. In search of an unbreakable logic obfus-
cation technique, researchers proposed several key insertion methods [4, 12, 13]. The prospect of
logic obfuscation and emerging threats of tampering [14] have propelled government agencies
like Defense Advanced Research Project Agency (DARPA) to call for programs like “Automatic
Implementation of Secure Silicon” (AISS) [15] under “Electronics Resurgence Initiative” [16] to
automatically include logic locking in chip designs for IP protection. Nevertheless, logic locking
possesses critical vulnerabilities. Most notably, recent work has demonstrated that all existing logic
obfuscation techniques are susceptible to Boolean satisfiability (SAT)-based attacks that extract the
locking key quickly [17].

A conceptual representation of the SAT attack is shown in Figure 1. The SAT attack constitutes
a miter-like circuit using two copies of the locked netlist to identify distinguishing-input-patterns
(DIPs) and applies that DIP to the unlocked chip to rule out incorrect keys. To mitigate SAT at-
tacks, several SAT-resistant logic obfuscation techniques have been recently proposed such as
SARLock [18], Anti-SAT [19], and SFLL [20]. However, logic locking techniques that claim to be
highly resistant to SAT attacks, tend to have low output corruptibility and structural traces that
are more vulnerable to other attacks such as bypass attack [21], Signal Probability Skew (SPS) at-
tack [22], removal attack [23], AppSAT attack [24], and FALL attack [25]. Hence, there remains a
critical need to develop countermeasures to SAT attacks.

SAT and its variant attacks, such as AppSAT [24] and ScanSAT [26], have been carried out
on combinational designs. For a sequential design, it is assumed that an attacker can exploit the
design-for-test (DFT) infrastructure (i.e., scan chain) to divide the sequential design into smaller
combinational circuits that SAT solvers can handle. Hence, the approach taken in this article con-
centrates on limiting the data collection capability required for a successful SAT attack. We adopt
one of our prior schemes that was aimed to secure a design against scan-based side-channel attacks
by dynamically obfuscating scan chains [27]. We take inspiration from this scan chain protection
technique to develop dynamically obfuscated scan chain (DOSC) for protection of obfuscated cir-
cuits and perform a comprehensive security assessment. Our major contributions are

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:3

Fig. 1. Conceptual overview of SAT attack. SAT attack requires two copies of the locked netlist to identify

DIPs and an unlocked chip to verify key-guesses.

• We investigate dynamic obfuscation of the scan chain and propose its effectiveness in resist-
ing oracle-guided attacks, e.g., SAT and its variants (AppSAT, ScanSAT, TimingSAT, etc.),
key sensitization, SPS, functional and structural analysis, bypass, and scan-based attacks.
We provide a mathematical model of DOSC-inserted design and a formal notion of its se-
curity. Our analysis shows that DOSC exponentially increases the resiliency against key
extraction by SAT attack and its variants.

• We mathematically and experimentally demonstrate the optimum configuration parameters
of DOSC (e.g., seed length, permutation rate, XOR gate placement policy throughout the
scan chain, etc.) to achieve maximum security. Our analysis is similar to defining the length
of the key for encryption algorithms to ensure their unbreakability in a reasonable amount
of time. Our investigation concludes that attack complexity in a DOSC-inserted logic-locked
design is maximized with the permutation rate of “1” and XOR gates placed uniformly
throughout the scan chain. All our experiments are performed using advanced SAT solvers
that correlate with our mathematical estimation of attack complexity with 95% accuracy.

• We have enhanced the shadow chain and obfuscated scan chain structure from previous
work to achieve maximum security. This enhancement improved scan-based attack com-
plexity to O (3N) in case of DOSC-inserted logic locked design.

• We implement an obfuscation tool flow that takes DOSC design parameters as input and
automatically produces the DOSC IP with minimal area and test time overhead.

• DOSC facilitated complete design flow has been proposed in this article along with secure
test flow (test generation and application) and post-test activation that ensures maximum
security and fault coverage.

The rest of the article is organized as follows: Section 2 presents some preliminaries on logic ob-
fuscation with static keys, their vulnerabilities, threat model, SAT attack exploiting scan chain,
and limitations of existing SAT-resistant techniques. Section 3 describes the DOSC architecture,
its operation, testability, and security establishment. Section 4 presents the mathematical model of
DOSC-inserted design and the formal notion of security. Section 5 analyzes the security of DOSC-
inserted design against SAT attack and experimental results based on the analysis. Section 6 rep-
resents results and discussions on how DOSC protects against other oracle-guided attacks. Finally,
Section 7 concludes the article.

2 PRELIMINARIES

2.1 Logic Obfuscation: Static Obfuscation Key

Logic obfuscation aims at locking and, to some extent, concealing underlying hardware IPs to pro-
tect them against reverse engineering, cloning, and overproduction. The locking key gates and the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:4 M S. Rahman et al.

Fig. 2. Various stages of electronic hardware supply chain. Green boxes are trusted, and red boxes are

untrusted.

keys are assumed to be chosen in such a way that an adversary cannot guess (or extract by other
means) them within a practically feasible time. Without knowing the correct unlocking (secret)
key, the correct functionality can never be retrieved. Once fabricated, packaged, and delivered to
a trusted facility, the locked ICs are activated by burning the unlocking key into a tamper-proof
memory. Existing schemes consider static obfuscation [28] where the unlocking key remains fixed
throughout the lifetime of the chip. Over the years, several key recovery attacks have been pro-
posed such as key-sensitization attack [13] and EPIC attack [29]. The former utilizes an automatic
test pattern generation (ATPG) tool to propagate the effect of a key gate to a primary output based
on the location of the key gates. EPIC attack [29] uses a hill-climbing search-based algorithm
that monitors test responses to guess the secret key. In 2015, a SAT-based attack [17] was pro-
posed that broke most of the combinational circuit logic obfuscation techniques within minutes.
Concurrently, decamouflaging attack [30] was proposed that reverse-engineered camouflaged ICs
within hours.

2.2 Threat Model

In this article, we assume that a trusted entity such as the design house performs logic design, ver-
ification, and synthesis based on a target technology library as shown in Figure 2. It also inserts
additional key gates in the synthesized design to perform logic locking. Once the re-synthesis of
obfuscated design is complete, DFT structures are integrated to improve testability. The design
house generates the obfuscated physical layout and GDSII version of the netlist and sends the
obfuscated GDSII to an offshore (untrusted) foundry for fabrication. After the fabrication, the die
goes through wafer sorting, dicing, and manufacturing test. The manufacturing test is a struc-
tural test that does not check if the circuit’s overall functionality is correct; instead, it tries to
confirm that the individual building blocks (known as standard cells or logic gates) are working
correctly. The assumption is that if the design is correct and structural test verifies the proper
integration and functionality of individual gates; then the overall functionality should be held.
Researchers have explored how manufacturing test can be done without using the correct chip
unlocking key [63]. Therefore, leveraging the structural test definition, we propose post-test acti-
vation for DOSC-inserted logic-locked design to ensure maximum security and fault coverage [62].
Once the manufacturing test differentiates the defect-free ICs, they can be packaged and shipped to
a trusted facility (e.g., IP owner) for activation and distribution. We adopt the typical assumptions
for the SAT attack [17] where the attacker has access to the following:

(1) Locked Netlist: The attacker is either an untrusted foundry or an end user. In the former
case, the locked, i.e., key gate inserted, gate-level netlist can be derived from the GDSII
in the foundry’s possession. For the latter, it is assumed that the netlist is generated from
images of the layout captured from a de-processed chip.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:5

Fig. 3. SAT attack using scan chain for sequential design to extract logic locking key, K . SAT tool determines

DIPs by applying input sequences in the locked netlist and verifies the key guesses by exploiting the scan

chain of the oracle.

(2) Unlocked IC: At a minimum, one unlocked IC (i.e., oracle) can return correct outputs for
any input pattern. Such an IC can be obtained from the open market, a rogue insider in
the trusted supply chain, or from an on-field system.

(3) Scan Chain: Scan chain access is required to convert a sequential circuit into a combina-
tional circuit, since the basic SAT attack only runs on combinational circuits.

Details on how testing is performed in a DOSC-inserted design is later discussed in Section 3 once
DOSC architecture is introduced.

2.3 SAT Attack: Exploiting Scan Chain

DFT infrastructures transform the sequential elements in the design to a chain of shift registers
(scan chain) to provide additional observability and controllability during the post-fabrication
structural test. Figure 3 shows how the scan structure can be exploited to perform the SAT at-
tack in a sequential design. The attacker performs these steps:

(1) The attacker derives a DIP for each combinational cone of the scan chain using the locked
netlist and two key guesses.

(2) Next, the attacker runs the unlocked chip (oracle) in test mode and shifts the DIPs into
the oracle.

(3) Then, the attacker switches to the functional mode and runs the circuit to capture func-
tional response for the DIPs.

(4) The attacker switches back to test mode to scan out the obtained functional response.
(5) Comparing the output of steps 1 and 4, the SAT solver rules-out keys that produce incor-

rect output by adding a constraint to the SAT solver.
(6) Return to step 1 and repeat until no DIPs are found.

It has been shown that SAT attacks are much faster than traditional brute force attack, because
each iteration typically rules out a large number of incorrect keys [17]. The efficiency of SAT attack
can be expressed as [19]

T =
M∑

i=1

ti , (1)

where T is the total execution time, M refers to the total number of SAT iterations, and time ti
refers to the required time to solve ith iteration. M depends on the number of DIPs, length of key
bits, and location of the key gates in the obfuscated netlist. ti relies on the complexity of solving
each iteration. SAT attack can be thwarted if either M or ti is large enough to make the SAT at-
tack infeasible within a reasonable length of time or with available resources. Since the scan chain

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:6 M S. Rahman et al.

provides access to circuit internals, it makes the SAT attack extremely efficient. Massad et al. [48]
showed that scan access provides high controllability and observability to the attacker. Having
scan access, an attacker can run the sequential circuit to any desired state that differentiates the
properties of the locking gates. Nevertheless, without scan access, an attacker must apply a set
of input sequences that steer the sequential circuit to the target state. Massad et al. [48] have at-
tempted to break camouflaged sequential circuits, which are conceptually similar to obfuscated
sequential circuits, without scan access by using model checker NuSMV [52]. However, the au-
thors were only successful for very small sequential benchmarks where the number of sequential
elements was less than 250 because of the fact that model checker tool cannot handle large se-
quential circuits. As one can see, the DFT technique that helps test engineers for finding faults,
also enables the attacker to convert a sequential design to a set of combinational cones and per-
form SAT attack. Researchers have recently proposed Encrypt Flip-Flop by obfuscating scan chains
to prevent scan-based attacks [31] by inserting multiplexers at the end of registers and selecting
Q or Q̄ based on an obfuscation key. However, due to the obfuscation type being static (i.e., the
key is fixed), such a scan obfuscated circuit can be modeled as a traditional logic locking problem,
and the adversary can perform the SAT attack to reveal the secret [26]. An improved version of
Encrypt Flip-Flop [57] has been proposed that dynamically changes the selection strategy of the
MUXes by encrypting the scan enable input of some scan cells using a test key. A similar approach
has been proposed in Reference [58], where a scan controller locks all the scan enable pins at a
time using a scan access key. The difference between these two scan obfuscation techniques is
that, improved Encrypt Flip-Flop [57] individually encrypts scan flip-flops while secure scan con-
troller [58] locks all the scan enable pins of the scan flip-flops in the scan chain at a time. However,
recently proposed DynUnlock [54] modeled the dynamic selection nature of scan flip-flops into a
combinational circuit and recovered the secret test key. Similar attack could be possible in Refer-
ences [57, 58] as well. Furthermore, both of these techniques require the use of a comparator that
weakens these methods to bypass attack [21].

2.4 Existing SAT-resistant Techniques and Their Limitations

To resist SAT attack, several SAT-resistant logic obfuscation techniques have been proposed, such
as SARLock [18], Anti-SAT [19], SFLL [20], and SFLL-fault [55]. SARLock and Anti-SAT resist
the SAT attack by increasing the number of required DIPs by exploiting a one-point function
to flip the output of the design for each incorrect key. While these two techniques are strong
enough to withstand the oracle-guided SAT attack, they are vulnerable to removal attack [23],
bypass attack [21], SPS attack [22], and approximate SAT (AppSAT) attack [24] due to their low
corruptibility; hence, they fail to provide the desired strength in functional obfuscation. Stripped-
functionality logic locking (SFLL) [20] was proposed to withstand the aforementioned attacks by
stripping some of the functionality of the original design and hiding it in the form of a secret
key. Once the correct secret key is applied, the original functionality of the design is restored.
However, the major limitation of SFLL is that it embeds the secret key or some properties of the
key into the stripped functionality unit. Fall attack [25] exploited this vulnerability by performing
structural and functional analyses of locked design to identify the locking key that is hardcoded in
the stripping circuitry. In extension of Reference [20], SFLL-fault [55] was proposed to efficiently
identify the functional cubes to be stripped from the original design and to automate this step by
utilizing the fault modeling of the VLSI testing principles. However, an ATPG-guided fault injection
attack [56] has been recently proposed, that can successfully recover the entire key within an
attack complexity that grows linearly with key size. In addition to the functional logic locking
that corrupts the design functionality for incorrect keys, several parametric locking methods have
been proposed [61] that modifies the design parameters, e.g., power, performance, reliability, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:7

Fig. 4. DOSC-inserted in a functional logic locked IP. Both logic locking key and DOSC seed are protected

in a tamper-proof memory.

so on, for incorrect key application. Nevertheless, these parametric locking methods are susceptible
to FALL attack [25] and a variant of SAT (TimingSAT) [60] that utilizes timing profile of all the
gates to embed into SAT formulation. Hence, there remains a need to develop a SAT-resistant logic
obfuscation technique that can combat all the known attacks and new oracle-guided attacks that
could arise.

3 DYNAMICALLY OBFUSCATED SCAN CHAIN

3.1 DOSC Architecture

A high-level overview of the DOSC architecture, inserted in the scan chain of a logic-obfuscated
functional IP, is shown in Figure 4. The logic obfuscation of functional IP can be done by exist-
ing logic obfuscation schemes [4, 7, 12, 32]. However, the main security advantage comes from
the DOSC architecture itself, which obfuscates the values extracted from scan chains. The DOSC
architecture [27] is composed of three major components:

(1) Linear feedback shift register (LFSR): In our proposed DOSC architecture, the scan obfus-
cation key changes randomly. A polynomial primitive LFSR is adopted to generate λ-bit pseudo-
random numbers, which are later passed through the shadow chain (to be discussed next) and
connected to the scan chain by XOR gates to one-time pad (OTP) scan chain contents. The LFSR
reads control signals from the control unit to generate pseudo-random numbers. The seed of the
LFSR is kept in a secured non-volatile tamper-proof memory along with the functional obfuscation
key. The LFSR clock and scan clock are related by the permutation rate,

α =
Scan Clock Frequency

LFSR Clock Frequency
. (2)

For example, a permutation rate of α = 4 means that LFSR generates pseudo-random numbers
once in every four scan clock cycles. The definition of permutation rate has been changed from our
previous work [27]. In the proposed DOSC structure, we take α = 1, i.e., LFSR is driven by the same
clock frequency as that of the shadow chain and scan chain. This configuration ensures maximum
security as we shall discuss in Section 4. It should be noted that, in case of an XOR feedback, a seed
of all zeros is forbidden as the LFSR would remain in a locked-up state and continues providing
all zero scan obfuscation keys. However, an LFSR with XNOR feedback would have a forbidden
state of all ones. An LFSR with XOR feedback can be tampered with and forced to be stuck into a
forbidden state by lowering the power supply during the scan mode when the seed is being loaded.
To mitigate this issue, DOSC uses XNOR feedback-based LFSR.

(2) Shadow Chain: The shadow chain protects LFSR generated pseudo-random scan obfus-
cation keys from ScanSAT [26] attack (detail discussed in Section 6), and other oracle-guided

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:8 M S. Rahman et al.

scan-based attacks. The length of the shadow chain is the same as the LFSR. It takes the λ-bit
pseudo-random number generated by the LFSR as input and generates a λ-bit scan obfuscation
key. Shadow chain consists of a chain of flip-flops, driven by the scan clock, with the first flip-
flop input connected to logic “1.” The flip-flops’ outputs are connected to the XOR gates inserted
into the scan chain through a series of AND gates. These are three-input AND gates where one
of the input is coming from the last flip-flop of the shift registers of the shadow chain (the green
interconnect in Figure 4). Upon reset or when a new seed is loaded, at first, all the flip-flops in the
shadow chain are reset and forced to logic “1” serially (the yellow interconnects in Figure 4) with
scan clock frequency. When the last flip-flop of the shadow chain becomes “1” at the λth clock
cycle after reset or seed being loaded, only then is the scan obfuscation key applied to the XOR
gates and scrambled responses start showing at the scan-out port. The shadow chain structure
has been modified since our previous work [27] (as shown in Figure 4) to enhance the scan chain
blocking capability.

(3) Obfuscated Scan Chain: Obfuscated scan chain is the scan chain of the (logic locked) func-
tional IP with λ number of XOR gates placed throughout the chain. In enhancement to our previous
work [27], here we propose XOR gates to be placed uniformly throughout the scan chain to en-
sure maximum security against SAT attack (the proof behind uniform placement is presented in
Section 4.2). One of the inputs of the XOR gates comes from the λ-bit scan obfuscation key while
the other input comes from the scan chain. When the scan obfuscation key is applied to the scan
chain, the XOR gates OTP scan chain contents.

A control unit reads a control vector from the tamper-proof memory in addition to the above
three components. The control unit’s role has been enhanced from Reference [27] to comply with
the threat model of logic obfuscation for functional logic-locked IP and DOSC seed. The control
unit of DOSC controls memory loading, LFSR activity (based on the applied control vector and
permutation rate), resets shadow chain during a system reset, or seed is loaded.

Requirements for Inserting DOSC: There are two requirements for using DOSC to resist SAT
attacks and supply chain threats: (i) the target design needs to be sequential with scan-chain in-
serted within it (this is always the case for any large-scale functional design); (ii) the combinational
circuit of the design needs to be logic locked by some logic locking scheme.

DOSC Security Operation: During functional mode, DOSC is turned off. When switched to the
test mode for scan access (a requirement for practical SAT attack), DOSC starts up in the following
steps: (1) DOSC powers up along with scan obfuscation circuitry, and the seed from the tamper-
proof non-volatile memory is loaded into the LFSR. (2) After the seed is loaded, the LFSR starts
generating pseudo-random numbers. (3) Individual flip-flop outputs within the shadow chain start
becoming logic “1” one by one in each clock cycle. Any intended scan-in pattern during the first
λ clock cycles after reset or seed being loaded will result in λ-bit zeros at the scan out. This pro-
tects against reset attack [33], which extracts secrets by exploiting the initial reset condition of
sequential elements. After λ clock cycles, flip-flops of the shadow chain will settle down, and any
scanned-in pattern will get obfuscated by the scan obfuscation key. Now, if the attacker tries flush-
ing the scan chain, the scan output is shuffled and they are the original or inverted response. This
way, the shadow chain protects both the scan obfuscation key as well as unscrambled data from
leaking through the scan out. Further, as XOR gates of DOSC are inserted into the scan chain,
DOSC is not prone to bypass attack either (details in Section 5-F).

Testability of DOSC-integrated Chip: DOSC establishes a secure test, along with preserving the
required test coverage [27]. In development from the previous work [27], in this subsection, we
propose a comprehensive method of manufacturing test pattern generation (and transformation
to their obfuscated forms) using dummy seed and functional obfuscation key. Manufacturing test

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:9

Fig. 5. Test flow in a DOSC vs. traditional design.

patterns can be generated using a set of dummy seed (for DOSC) and key values (for functional
logic locked IP) loaded to the on-chip tamper-proof memory [62]. Functional obfuscation keys can
be loaded into key registers (that are part of the scan chain [63]) from the tamper-proof memory
during power on. The scan enable pin is utilized to select between functional obfuscation key and
scan input [63]. Furthermore, scan chain being locked by DOSC will resist any scan-based attack
on functional obfuscation keys as discussed in Section 6. Dummy seed and key values are different
than the original unlocking seed and functional obfuscation keys. The purpose of dummy seed and
key values are to perform manufacturing test in an untrusted facility without exposing the original
unlocking seed and functional obfuscation keys. The original seed can be made unique from chip
to chip, however, the functional obfuscation key has to be same for all the chips. A step-by-step
test flow in a DOSC facilitated design is shown in Figure 5 along with a traditional test flow. As
shown in Figure 5, test engineers must apply obfuscated test patterns. Knowing scan obfuscation
keys for each test cycle and the XOR gates’ location throughout the scan chain, test engineers
can generate obfuscated test patterns. While the test engineer shifts in these obfuscated patterns,
DOSC transforms them into original ATPG patterns before switching to functional mode. Cor-
respondingly, when the test engineer shifts-out captured functional response, DOSC obfuscates
shift-out responses, as shown in Figure 5. The test engineer receives obfuscated ATPG responses
from the designer and compares them with in-field responses to identify defective parts. In the case
of designs with scan compression, compressed test patterns are first decompressed using the de-
compressor transfer function and then transformed into obfuscated patterns. Similarly, captured
responses are compressed first by utilizing the compressor transfer function before obfuscating
them using scan obfuscation keys generated by DOSC. The ATPG pattern and response conver-
sion can be done offline at any trusted facility. The test pattern and response conversion can only
be done correctly if the LFSR seed is known, along with the exact architecture and XOR placement
of DOSC. Therefore, an adversary who has no access to the seed stored in a tamper-proof memory
and is trying to obtain the seed and functional obfuscation keys will have no means to perform
such conversions and perform the SAT attack. A secure test flow considering test compression,
their associated pattern, and response transformation is a part of our on-going research.

3.2 Dynamic Scan Obfuscation: Resistance to SAT Attack

In the case of dynamic obfuscation (i.e., DOSC), the scan chain obfuscation key changes periodi-
cally making it more difficult for the attacker to retrieve the design’s static obfuscation key. Despite
only trying to make logic obfuscation resilient to SAT attack, an effort that has been proven unsuc-
cessful thus far, restricting access to the oracle through scan chain will resist oracle-guided SAT
attacks as well as other scan-based attacks. Our initial scheme [27] was primarily developed to pro-
tect scan infrastructure from scan-based attacks, which aim to extract crypto keys exploiting the
scan chain. Note that there exist fundamental differences in the threat model for scan attacks and
the oracle attacks on obfuscated logic. In a scan attack, it is normally assumed that the attacker

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:10 M S. Rahman et al.

does not have detailed knowledge of the architecture of the scan chain. However, in the logic
locking threat model, the adversary has the detailed knowledge of the scan architecture, since
he/she has access to the entire locked netlist. Therefore, any protection mechanism incorporated
in the scan architecture would also be visible to the attacker. Hence, none of the existing scan
protection techniques can directly address logic locking attacks using scan. Thus, we propose to
employ the new DOSC architecture to prevent oracle-guided SAT attacks on a locked netlist.

We consider two types of obfuscation here: (i) Functional obfuscation: Logic locking of the func-
tional circuitry of the IP; (ii) Scan obfuscation: Obfuscating the scan chain of the logic locked IP.
The critical advantages of dynamically obfuscating scan chain are as follows.

(1) SAT attack requires the obfuscation key to be static in the duration of applying DIPs and
retrieving the output responses. However, in DOSC, the scan obfuscation key changes in
every or every few cycles. Therefore, when the DIPs are shifted in or the responses are
shifted out, the scan obfuscation key has already been changed multiple times and altered
scan inputs and/or responses.

(2) In case of dynamic obfuscation, the SAT tool needs to solve the circuitry (DOSC circuitry
in our case) that generates the dynamic (pseudo-random in our case) obfuscation keys.
The complexity of solving the key generator circuit to retrieve the seed by observing the
scan out responses is extremely high.

If solving scan obfuscation circuitry can be designed in a way that the scan obfuscation key changes
before the SAT solver reaches satisfiability, then the SAT attack complexity increases drastically,
and the attack can be resisted. While dynamic obfuscation of scan chain is feasible, since changing
scan obfuscation key scrambles just the shift-in/shift-out scan patterns only during test mode
and they can be translated back to the original values off-line, it is not practical for functional
obfuscation as changing functional obfuscation key changes the functionality of the entire design.

4 DETAILED SECURITY ANALYSIS OF DOSC

In this section, we perform mathematical modeling and security analysis of DOSC-inserted logic-
obfuscated designs. At first, we present a functional model showing the scrambling operation
performed by DOSC in the scan chain. Next, we estimate the SAT attack complexity of a DOSC-
inserted logic-obfuscated design for different sizes/parameters of DOSC.

4.1 Functioning Model of DOSC-inserted Design

DOSC scrambles scan chain contents using an LFSR. An LFSR of length λ is a finite-state automaton
that generates a semi-infinite sequence of elements of B = {0, 1} with a linear recursive relation of
degree λ. The output of the LFSR, that left shifts the internal states of the LFSR in the next cycle,
depends on the current internal states of the LFSR and the function of the feedback path, as shown
in Figure 6. Let us assume an LFSR of length λ with internal states l = {0, 1}λ . The output of the
LFSR at any time t can be represented by the following equation:

l t+1[0] =

λ−1∑

i=0

cil
t [i]mod 2, (3)

where c0, c1, . . . , cλ−1 are the feedback coefficients. The output at any time t is a pseudo-random
number comprised of all the elements of internal states.

Now, let us consider a combinational logic-obfuscated circuit that implements a Boolean func-
tion Flocked : {I ,K } → Olocked , where input space I = {0, 1}m with m inputs, output space O =
{0, 1}n with n outputs, and key space K = {0, 1}p with p key inputs. The locked circuit gets acti-

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:11

Fig. 6. LFSR. At each cycle internal states are shifted left while right-most bit is realized by feedback function.

Table 1. List of Notations for Mathematical Models

Notation Description

t Clock cycle number
N Length of scan chain
λ Length of DOSC
α Permutation rate of DOSC
i Scan cell position in the N -bit scan chain

k Number of XORing for ith scan cell
b Spacing of XOR gates throughout the chain

SI t [i] Scan-in bit to ith scan cell at t cycle
(SI t [i])′ Scrambled pattern of SI t [i]
SOt [i] Scan-out bit from ith scan cell at t cycle
(SOt [i])′ Scrambled response of SOt [i]
l t [i] ith bit of LFSR pattern at t cycle
γ Number of control signals into LFSR
d Ratio of number of variables to number of clauses

vated only when the correct unlocking key Kf is applied, ∃Kf ∀I Factivated : {I ,Kf } → Olocked =

Oactivated . However, in case of a sequential logic-obfuscated circuit, the output depends on the ap-
plied obfuscation key and the internal states along with the primary inputs, Flocked : {I , SI ,K } →
Olocked , where internal state space, SI = {0, 1}N for N number of sequential elements. Internal
states are considered as pseudo-primary inputs, which can be accessed via scan chain [17]. Table 1
defines different notations used in the models.

To secure logic-obfuscated design against oracle-guided attacks that exploit the scan chain, we
insert a λ-bit DOSC in the N -bit scan chain of the logic-obfuscated circuit, as shown in Figure 7(i).
For any reasonable size design, the number of scan chain is much larger than the length of the LFSR
(N � λ). Therefore, we distribute λ key gates from DOSC throughout the N -bit scan chain with a
spacing of b. ATPG patterns in a DOSC-inserted chip goes through the following transformations.

Scan Shift-in: During scan testing, the internal states are first reset, and the chip is powered on
in scan mode, which activates DOSC. Then the input patterns generated by an ATPG tool (e.g.,
Synopsys TetraMAX) are shifted into the scan chain through the scan-in port in a reverse order
to clock cycle. For example, the scan-in bit for the last scan flip-flop is shifted into the scan-in
port in the first cycle (SI 0[N − 1]) and the rest of the scan-in bits are shifted serially in descending
order. These input patterns are scrambled by the DOSC-generated dynamic scan obfuscation keys
of the corresponding cycle before reaching their target scan flip-flops. The scrambling operation
of DOSC is determined by (i) the location of the scan-in bit in the scan chain; (ii) the position of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:12 M S. Rahman et al.

Fig. 7. Different spacing of DOSC XOR gates in the scan chain for, (i) spacing = b, (ii) example for N = 6, λ =
4, b = 2., and (iii) spacing = 1.

Table 2. Functional Model of DOSC Scrambling Operation with Example for N = 6, λ = 4, and b = 2

Scan Shift-in Functional Capture Scan Shift-out

Scan-in Scrambled Scan-in Capture Scrambled Scan-out

SI N−1−i [i] (SI N−1[i])′ SO N [i] (SO2N−i [i])′

SI 0[5] (SI 5[5])′ = SI 0[5] ⊕ l 0[0] ⊕ l 2[1] ⊕ l 4[2] SO6[5] (SO7[5])′ = SO6[5] ⊕ l 7[3]

SI 1[4] (SI 5[4])′ = SI 1[4] ⊕ l 1[0] ⊕ l 3[1] ⊕ l 5[2] SO6[4] (SO8[4])′ = SO6[4] ⊕ l 8[3]

SI 2[3] (SI 5[3])′ = SI 2[3] ⊕ l 2[0] ⊕ l 4[1] SO6[3] (SO9[3])′ = SO6[3] ⊕ l 7[2] ⊕ l 9[3]

SI 3[2] (SI 5[2])′ = SI 3[2] ⊕ l 3[0] ⊕ l 5[1] SO6[2] (SO10[2])′ = SO6[2] ⊕ l 8[2] ⊕ l 10[3]

SI 4[1] (SI 5[1])′ = SI 4[1] ⊕ l 4[0] SO6[1] (SO11[1])′ = SO6[1] ⊕ l 7[1] ⊕ l 9[2] ⊕ l 11[3]

SI 5[0] (SI 5[0])′ = SI 5[0] ⊕ l 5[0] SO6[0] (SO12[0])′ = SO6[0] ⊕ l 8[1] ⊕ l 10[2] ⊕ l 12[3]

DOSC XOR gates in the scan chain, which is determined by spacingb; and (iii) the permutation rate
α . The first two parameters control how many times scan-in bit for ith scan-cell will be XOR’ed
by DOSC-generated dynamic scan obfuscation key bits of which cycle. Figure 7(i) shows a scan
chain with DOSC XOR gates placed for spacing b. Note that the scan chain values get XOR’ed
more and more when shifted toward the later flip-flops in the chain. The permutation rate α along
with DOSC seed decide scan obfuscation keys applied to the scan chain during each scan cycle.
Therefore, the permutation rate α = 1 produces the maximum obfuscation in scan-chain values.
In this article, we consider permutation rate α = 1.

The scrambled version of the scan-in patterns can be determined using the following equation:

(SIN−1[i])′ = SIN−1−i [i] ⊕ x[i], 0 ≤ i ≤ N − 1, (4)

x[i] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ−2⊕
k=0

lN−1−i+k .b [k], if i ≥ b (λ − 2],

i/b �⊕
k=0

lN−1−i+k .b [k], otherwise,

(5)

where k .b is the arithmetic product of spacing b and loop variable k . Note that all the scan-in bits
appear at the input of their target scan flip-flop in the same cycle. Table 2 shows how scan patterns
are transformed in the scan chain for an example of N = 6, λ = 4, andb = 2 (shown in Figure 7(ii)).

Functional Capture: Once scan-in patterns are shifted into the scan chain, the chip is switched
to the functional mode and run for one cycle to capture the functional response. DOSC is dis-
abled during the functional mode. At the end of the functional cycle, the scan chain is filled with
responses generated by the circuit running in the functional mode, which can be represented by

SON = Flocked

(
I ,
(
SIN
) ′
,Kf

)
. (6)

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:13

Note that, due to the presence of DOSC, functional responses are realized by the scrambled version
of the scan-in patterns. The third column (Functional Capture) of the Table 2 shows the functional
response for the scrambled scan-in patterns. Nevertheless, the purpose of expression 6 is to portray
how DOSC obfuscates the captured responses. Therefore, we kept corruption due to logic obfus-
cation inactive by applying the correct unlocking key, Kf . In a practical scenario, the unlocking
key Kf being secret to the attacker will be replaced by K in expression 6 and make the captured
responses even more obscure.

Scan Shift-out: At this step, the chip is switched back to the scan mode (where DOSC is re-
activated) to shift-out captured responses serially through the scan-out port. Scan chain contents
get scrambled by DOSC-generated scan obfuscation key bits. This scrambling process is similarly
dependent on the location of the response in the scan chain, b, as well as α . In contrast to scan-in,
the scan-out bits that are in later flip flops with be XOR’ed less times than those in earlier flip flops.
This scrambling can be represented mathematically as follows:

(SO2N−i [i])′ = SON [i] ⊕ y[i], 0 ≤ i ≤ N − 1, (7)

y[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ−2⊕

k=
i/b �+1

lN+k .b−i [k], if i < b (λ − 2),

l2N−i [λ − 1], otherwise.

(8)

Note that the last scan flip-flop content comes out first through the scan-out port and rest of the
contents keep coming serially. An example of scrambling process of captured functional response
during shifting out is shown in Table 2. This scrambling process by DOSC’s scan obfuscation
keys generated removes direct correlation between scan-in and scan-out patterns, which is clearly
visible in Table 2.

Notes on Fault Testing and Diagnosis: Inclusion of DOSC changes actual ATPG patterns (SI t)
to scrambled patterns (SI t)′ before applying to the functional circuit. To apply the actual ATPG
pattern in the functional circuit in the presence of DOSC, the test engineer needs to shift-in (SI t)′

through the scan-in port. Knowing the seed and location of XOR gates in the chain, the trusted test
engineer can translate SI t to (SI t)′ utilizing the equations in Table 2 and apply them to the design.
Similarly, utilizing the inversion property of XOR function, DOSC generated scan obfuscation
keys can be used to de-obfuscate the initially shifted pattern (SI t)′ to SI t before switching to
the functional mode and applying to the functional circuit. Similarly, the designer can do the same
for responses during scan-out.

Without knowing the seed, the attacker can never identify the (SI t)′ that needs to be shifted
to the scan-in port that will eventually be translated to the original (SI t) before switching to the
functional mode, and same for scan responses. Therefore, the attacker cannot access any meaning-
ful data through the scan ports to be able to perform SAT-based attacks and extract the functional
obfuscation key.

4.2 Key Gate Insertion Technique

From Equations (4)–(8), it can be realized that DOSC scrambling process greatly depends on the
XOR gate locations. To ensure maximum confusion in the scan chain contents, we consider the
following constraints for key gate insertion with spacing b.

• One key gate needs to be placed at the beginning and another at the end of the scan chain;
otherwise, some of the scan-in bits and output responses will remain unscrambled. Fur-
thermore, if two key gates are placed at the farthest ends of the scan chain, during the SAT
attack, the attacker needs to identify scan obfuscation key for (2N − 1) cycles after scan

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:14 M S. Rahman et al.

obfuscation key is applied, which forces the attacker to unroll DOSC for (2N − 1 + λ) times
(λ cycles for shadow chain). The greater number of cycles the attacker has to unroll DOSC,
the more complex the SAT attack will become.

• The rest of the (λ − 2) key gates need to be distributed throughout the chain in such a
way that maximizes scrambling. In Figure 7(iii), two XOR gates are placed at the farthest
ends of the chain, and the rest of the (λ − 2) XOR gates are placed at the initial side of the
chain with a spacing, b = 1. Based on Equation (4), LFSR-generated patterns of consecutive
cycles will be scrambling the scan chain contents for b = 1. Furthermore, in this case, scan
out responses (SO[λ − 1 : N − 1]) will be XOR’ed only once for i ≥ (λ − 1), thereby reduces
scrambling. Similarly, placing these λ − 2 gates with spacing of b = 1 at the end of the chain
will reduce scrambling in the scan-in process. Increasing spacing results LFSR-generated
patterns performing XOR operations on the scan chain contents to be b cycles apart from
each other, which increases randomness among them. However, spacing among the XOR
gates needs to be restricted to accommodate all the λ XOR gates inside the chain. By setting
i = N − b in the condition of Equations (4) and (8), we can ensure maximum scrambling
for both scan-in patterns and scan-out responses. Solving for i = N − b, we get optimum
spacing between DOSC XOR gates in terms of maximum scrambling:

b =
⌊ N

λ − 1

⌋
. (9)

We have performed experiments on how SAT attack complexity varies due to change in
crucial DOSC gate placement. Results show that SAT attack complexity reaches the maxi-
mum when two key gates are placed in the two corners of the chain, and the rest of the key
gates are distributed uniformly (see Section 5.5).

4.3 SAT Attack Complexity

We have developed a generic model of the mathematical complexity introduced by DOSC in terms
of Boolean satisfiability.

SAT Problem: The Boolean satisfiability problem can be represented by propositional variables in
the Galois Field of two (GF (2)), which are either true or false [36]. The properties of propositional
logic are as follows

• A propositional variable or the negation of a propositional is known as a literal.
• A propositional formula is a combination of propositional variables related by only three

logical operators: AND, OR, and negation.
• A clause is a disjunction (OR) of literals.
• In propositional logic, any algebraic equation can be represented as a conjunction (AND)

of clauses, which is called conjunctive normal form (CNF).

The SAT problem is the process of determining whether all the propositional variables in the
propositional formula can be assigned values such that the propositional formula itself satisfies to
be true. In the case of the SAT attack on the logic-obfuscated circuit, the SAT solver tool, such as
[17], transforms the miter circuit to CNF and tries to achieve satisfiability by assigning values to
the key inputs. If the CNF of the miter circuit can be assigned such a key value that the output of
both locked netlist and unlocked chip matches for any input pattern, then the formula is satisfied
(i.e., all the clauses of the CNF are satisfied). The difficulty of finding the key of a logic-obfuscated
circuit directly depends on the complexity of solving CNF of the miter circuit developed. Hence,
the difficulty of finding the seed of DOSC using a SAT solver relies on the mathematical complexity
of the CNF representation of DOSC. The complexity of a CNF-SAT problem depends on the number

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:15

of clauses, the total length of all the clauses (sum of the literals of all the clauses), the complexity of

each clause, and the number of variables [37].

Converting DOSC to CNF: To find the initial seed of DOSC, a SAT solver needs to transform the
DOSC circuit to its CNF expression with internal states of LFSR being λ, propositional variables
l t [0], l t [1], . . . , l t [λ − 1] (where t means time cycle) and solve. Once all the flip-flop outputs of the
shadow chain become “1,” the CNF of DOSC consists of the CNF expression of the λ-bit LFSR and
the XOR chain. The characteristic polynomial of a λ-bit LFSR can be represented as following using
the feedback coefficients c0, c1, . . . , cλ−1,

P (l) = 1 + c0l
t [0] + c1l

t [1] + · · · + cλ−1l
t [λ − 1]. (10)

Equation (10) is a monic polynomial that can be represented by a Frobenius companion ma-
trix [38]. Therefore, the states of the LFSR can be represented using vectors of bits along with the
companion matrix of the characteristic polynomial (Equation (10)), and can be computed inGF (2),
disregarding the polynomial equation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l t+1[0]
l t+1[1]
l t+1[2]
.
.

l t+1[λ − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 . . cλ−1

1 0 0 . . 0
0 1 0 . . 0
.
.
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l t [0]
l t [1]
l t [2]
.
.

l t [λ − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

The companion matrix of Equation (11) is a square matrix of size λ × λ, where λ is the degree of
the LFSR characteristic polynomial shown in Equation (10). We have the following conditions in
the companion matrix shown in Equation (11).

• The sub-diagonal elements are all ones to perform left shift in the current internal state of
the LFSR.

• The topmost row contains the coefficients of the characteristic polynomial to determine the
feedback path.

The companion matrix transforms the current state of LFSR to the next state. This way, the next
state of LFSR can be represented by a set of linear equations of the current state (which is the
seed at the initial cycle) set of literals and added to the CNF formula of the functionally obfuscated
design. By carefully analyzing the number of added clauses, literals, and the length of clauses, we
can accurately estimate the resiliency added to our design against SAT attacks.

A linear equation comprising ofm monomials, generates 2(m−1) number of clauses andm.2(m−1)

number of literals when converted to a CNF [37]. Not all the internal states contribute to the
feedback polynomial, as one can see. The location of the feedback taps defines the period of the
LFSR. To design a maximum length LFSR, we choose feedback taps such that the corresponding
feedback polynomial is primitive. This means the following conditions are met: (i) the number of
taps is even; (ii) the set of taps is set-wise co-prime, i.e., there is no common divisor other than 1 to
all taps. With this choice, once the λ-bit LFSR is transformed to CNF, the contribution from the set
of linear equations of states from Equation (11) in the overall CNF is of the following three types:

• If the number of feedback taps is β , then the feedback equation derived from the top row
of the companion matrix realizes (β − 1) XOR gates, which generates 4(β − 1) number
of clauses and 12(β − 1) number of literals in the CNF according to Tseytin transforma-

tion [40]. The significance of the multiplication constants 4 and 12 comes from the fact that
a Boolean XOR operation generates 4 clauses of 3 literals each, once translated to a CNF
sub-expression.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:16 M S. Rahman et al.

Table 3. Mathematical Complexity of DOSC

Number of Clauses, C Number of Literals, L Number of Variables, V

LFSR {4(β − 1) + (λ − 1)2(γ −1) }(2N − 1) {12(β − 1) + γ (λ − 1)2(γ −1) }(2N − 1) λ + (2N − 1)2 + 2λ (2N − 1)

XOR 4N λ 12N λ N λ

Output N + 1 N + 1

Total {4(β − 1) + (λ − 1)2γ + 4λ + 1}N {12(β − 1) + γ (λ − 1)2γ + 12λ + 1}N λ + (2N − 1)2 + 2λ (2N − 1) + N λ

• If the LFSR consists γ number of control signals, then each of the (λ − 1) equations derived
from the lower (λ − 1) rows of the companion matrix (11) will contain γ number of mono-

mials. Therefore, these (λ − 1) equations will generate in total {(λ − 1).2(γ−1) } clauses and

γ (λ − 1).2(γ−1) literals in the CNF.
• The number of variables in the CNF expression depends on the number of input/output

ports of the circuit, and internal variables due to unrolling. The I/O ports in a LFSR consists
of seed, control signals, and outputs. Unrolling of DOSC introduces new internal variables
in the CNF sub-expression, because unrolling a sequential circuit generates pseudo-primary
input and pseudo-primary output. The pseudo-primary output of one-time frame drives the
pseudo-primary input of the next time frame [41].

Therefore, the total number of clauses in CNF expression generated by a λ-bit LFSR with β feed-

back taps equals 4(β − 1) + (λ − 1).2(γ−1) . We again take the example where a λ-bit DOSC is in-
serted into an N -bit scan chain of a logic-obfuscated circuit through λ number of XOR gates. The
actual functionality of the design is irrelevant here, since the attacker needs to break the DOSC
architecture first. If an attacker attempts to perform the SAT attack on this DOSC-inserted design,
then he/she needs to apply DIPs in N -bit scan chain and observe scan-out vectors in each SAT
iteration. Both scan-in and scan-out vectors being scrambled by dynamic scan obfuscation keys
must be de-scrambled to figure out a correlation between applied DIPs and collected responses to
ultimately extract the key of functional obfuscation. From the scan-out response of the functional
model of DOSC-inserted design presented in Table 2, it can be noticed that, to de-scramble scan-in
and scan-out response of an N -bit scan chain, one needs to reveal the scan-obfuscation key for
(2N − 1 + λ) number of cycles. This requires unrolling of λ-bit LFSR for (2N − 1) number of stages.
Therefore, the total number of clauses from LFSR will be multiplied by (2N − 1) for an obfuscated
circuit with an N -bit scan chain. DOSC is inserted into the scan chain through a series of XOR
gates, which also contribute clauses and literals in the CNF expression. In scan mode, each of the
scan flip-flops in the scan chain is treated as pseudo-primary input and output, which generates
one literal clause in the CNF.

The total number of clauses and literals contributed by DOSC in the CNF expression are summa-
rized in the second and third column of Table 3 with an approximated total shown in the last row.
Identifying the number of variables in the CNF expression is a bit tricky, since all the variables do
not scale due to unrolling. The variables in the CNF expression that come from seed (λ) are shared
by all the unrolled time frame model of DOSC. The control inputs, pseudo-primary inputs, and
pseudo-primary outputs of unrolled LFSR of DOSC are scaled by (2N − 1) due to unrolling. Lastly,
each of the DOSC XOR gates create one additional variable, according to Tseytin transformation
[40]. The total number of variables generated by DOSC in the CNF expression is also shown in
the last column in Table 3. Note that, these mathematical equations are based on permutation rate
α = 1. For changing the permutation rate or XOR gate position, the number of times DOSC needs
to be unrolled will change. Furthermore, it is noteworthy that the complexity introduced by the
functional obfuscated circuit will be added to the complexity introduced by DOSC circuitry.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:17

Fig. 8. Relation of the density of DOSC-inserted benchmark’s SAT instance to DOSC key size.

Relation of SAT solvers/CNF Features to Time Complexity: Formulating the complexity of
a SAT problem is a fundamental open question. However, researchers have found that the com-
putational complexity of a SAT problem depends on the density of the combinatorial problem,
the order of the problem (V), machine resources, the solver type, and solver heuristics [39]. The
order represents the number of variables (V), and the density (d) represents the ratio of the num-
ber of clauses to the number of variables. Coarfa et al. [39] investigated the complexity of 3-SAT
instance for varying density, order, and solver experimentally. Based on their investigation, the
running time of 3-CNF SAT problem shows following phase transitions:

(1) GRASP solver: t = O (2V ϵ), where ϵ increases for 3.8 > d < 4.26 and decreases ford > 4.26,
(2) CPLEX solver: t = O (2V ϵ), for d > 4.0,
(3) CUDD solver: t = O (2V ϵ), for d > 0.5 and ϵ is independent of density for d > 2.

From Table 3 it can be noticed that for a γ = 3, the ratio of the number of literals (L) to the number
of clauses (C) is very close to 3, which makes SAT attack on DOSC-inserted logic-obfuscated de-
sign an NP-complete 3-CNF satisfiability problem [42]. CUDD solver is based on reduced ordered
binary decision diagram (ROBDD) that are effective for hardware verification [39]. Experimental
results in Section 5 of this article are based on modern SAT solvers like CUDD, MiniSAT [51], Cryp-
toMinisat [50] and lingeling [49]. In Figure 8, we have shown how density (d) of DOSC-inserted
design varies with changing DOSC size (λ). From the above explanation and Figure 8, it is clear
that the complexity of the SAT attack on DOSC-inserted design always falls in the exponential
region of running time, O (2V ϵ). The designer should choose DOSC architecture parameters, e.g.,
size of DOSC (λ), permutation rate (α), and XOR gate locations such that the attack complexity
always grows exponentially. However, the actual time depends on machine resources and solver
heuristics. In Sections 5.2 and 5.3, we show that the effect of DOSC architecture increases the SAT
attack complexity and this effect is correlated with the CNF encoding introduced in this section
(as shown in experimental results).

5 SAT ATTACK ANALYSIS AND RESULTS

In this section, we evaluate DOSC-inserted functional obfuscated design against different SAT at-
tacks and present experimental results based on the analysis. Table 4 shows the statistics of the
ISCAS’89 [34] and ITC’99 [35] benchmarks utilized for the experiments. All attacks were per-
formed on a server with 32 core 2.6 GHz CPU and 64 GB memory; 3% of the resources were utilized

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:18 M S. Rahman et al.

Table 4. Statistics of the Benchmarks Used for Experimental Validation

Benchmark Inputs Outputs Gate count Scan chain

s838 34 1 446 32-bit
b07 1 8 441 49-bit
s1423 17 5 657 74-bit
b14 32 54 10098 245-bit
s38417 28 106 22179 1636-bit

in the attack. For our experiments, we have used open-source SAT attack tool on logic locking [17]
that is based on modern SAT solvers, e.g., MiniSAT [51], CryptoMinisat [50], and lingeling [49].

5.1 SAT Attack on LFSR Seed

In this attack technique, the attacker models DOSC for dynamic scan obfuscation key of each cycle
and performs the SAT attack to trace back to LFSR seed only. From an attacker’s perspective, this
attack model should be the most promising one to compromise the security of DOSC-integrated
functional obfuscated circuit, since the seed is the only static asset in DOSC. Furthermore, this
attack exploits the minimum complexity bound in a DOSC-inserted obfuscated circuit as it can be
performed utilizing test mode only; the functional circuitry is bypassed (represented by the dotted
line shown in Figure 9) so it does not introduce any additional complexity. With the knowledge of
the seed and the configuration of the LFSR, the attacker can attempt to identify scan obfuscation
key at any cycle performing the scrambling translation on its own. This breaks the scan obfuscation
security and clears the attacker’s path to perform SAT attack to find the functional obfuscation key.
Keeping this in mind, we have inserted different size DOSC in the scan chain of b07 ITC’99 [35]
benchmark circuit and performed the SAT attack to reveal the seed. For all the attacks here, we
have placed one DOSC key gate at the beginning and another at the end of the scan chain. The
rest of the DOSC key gates are distributed throughout the chain uniformly.

In Figure 10, the left Y-axis shows the number of clauses in the CNF for different key-size DOSC
in terms of experimental results and mathematical estimation from Table 3. The right Y-axis shows
the exponential growth of SAT attack execution time. It is observed that the number of clauses
in the CNF increases linearly with increasing DOSC size while the SAT attack execution time
grows exponentially. We have considered a timeout margin of 10 days here. SAT attack successfully
revealed seed in less than 2 h for 4- to 7-bit DOSC, in less than a day for 8- to 10-bit DOSC,
in roughly 2 days for 12-bit DOSC, and in nearly 10 days for 16-bit DOSC. A small spike in the
number of clauses of CNF for both experimental and model data at 8-bit DOSC occurred due to an
increase in the number of XOR operations in the feedback equation. We also performed attacks
for larger size DOSC (24–128 bit DOSC), however, all those attacks timed out. From the plot, one
can easily extrapolate that it would take 18.5K years to reveal seed of a 50-bit DOSC-inserted into
a 50-bit scan chain under this attack model; however, this estimation may differ from actual attack
time due to the heuristic nature of SAT.

5.2 SAT Attack on Scan Obfuscation Keys

In this model, the attacker targets LFSR-generated dynamic scan obfuscation keys as a potential
asset. With the scan obfuscation key of every cycle revealed, the attacker can reveal the scram-
bling operation performed by DOSC, which clears the attacker’s path to perform SAT attack on
logic-obfuscated functional IP. It is the theoretical requirement of the SAT attack that the SAT
solver observes input sequence and output response of several cycles to perform a successful attack

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:19

Fig. 9. SAT attack on DOSC-inserted design. As scan obfuscation key generated by DOSC changes each

cycle, DOSC is modeled for each cycle before test patterns are applied to logically obfuscated functional IP.

Fig. 10. Scan-only SAT attack complexity analysis and exponential growth of time with DOSC.

provided that the obfuscation key being static during this entire time. However, the scan obfusca-
tion key generated by DOSC changes every cycle making this attack model futile.

5.3 SAT Attack on Obfuscation Key and DOSC Seed

In this attack model, the attacker scans in DIPs through the obfuscated scan chain and investigates
the scanned-out responses to reveal functional obfuscation keys. While shifting DIPs into the scan
chain and shifting out captured responses from the scan chain, each shifting bit gets scrambled
by the scan obfuscation key of the corresponding cycle generated by DOSC (as LFSR keeps gen-
erating pseudo-random scan obfuscation keys at each cycle). SAT attack requires the obfuscation
key to be static in the duration of applying DIPs and retrieving the output response. As shown in
Figure 9, we modeled DOSC for dynamic scan obfuscation key at each cycle for a test event where
N scan cycles are needed to shift-in the test patterns and N scan cycles are needed to shift-out the
captured responses. We integrated the unrolled model of DOSC with the combinational equivalent
of logic-obfuscated functional IP (solid line of XOR gates output to functional IP in Figure 9). As
all the dynamic scan obfuscation keys are generated from a static seed, we performed the SAT
attack on this model to trace back to the original seed of the DOSC and the secret unlocking
key of the functional IP. We inserted different size DOSC in the scan chain of three different size
benchmarks—small (s838), medium (b07), and large (s38417). For functional obfuscation, we have
followed RLL [4] approach and inserted 32-bit functional obfuscation key gates. For each of the
benchmarks, we have performed the SAT attack to reveal both DOSC seed and obfuscation key of
functional IP. We have also estimated the complexity of the DOSC-inserted functional obfuscated
benchmarks using our mathematical model discussed in Section 4-B. Observations from this ex-

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:20 M S. Rahman et al.

Fig. 11. SAT attack on s838, b14, and s38417 benchmarks integrated with different size DOSC. For each

plot, the left Y-axis shows the number of clauses in CNF from the experimental and mathematical model

for different size DOSC. The right Y-axis shows the exponential growth of SAT attack execution time for

the corresponding benchmark in log scale. A timeout window of 10 days, 20 days, and 1 month has been

considered for s838, b14, and s38417 benchmarks, respectively.

periment are shown in Figure 11. It can be seen that SAT attack complexity increases exponentially
with increasing DOSC key size for all three benchmarks and out mathematical estimation of com-
plexity is always lower than the actual one. We have considered a timeout margin of 10 days, 20
days, and 30 days, respectively, for small, medium, and large benchmark. In the case of the small
benchmark (s838), our results demonstrate that SAT attack timed-out beyond 20-bit DOSC. For
medium benchmark circuit (b14), the SAT solver took roughly 18 days to reveal both functional
obfuscation key and DOSC seed. We have also performed the SAT attack on s38417, the largest
available benchmark circuit from ISCAS’89 [34], with DOSC-inserted in the 1,636-bit scan chain.
In this case, the SAT solver took less than 4 days to reveal 5-bit seed and unlocking key of s38417.
Once we increased the DOSC key size to 6-bit, the attack went on for months without converging
to any solution.

5.4 SAT Attack through Primary IOs

Without scan access, an attacker can no longer control or observe flip-flops for performing the SAT
attack. However, the attacker may attempt to perform the SAT attack in functional mode only by
unrolling the sequential design and using primary IOs. Sequential circuit unrolling increases the
SAT attack complexity. Let us consider that a sequential design has N number of state elements.
The total number of possible states in the design is 2N , though not all states are valid states, i.e., not
all states can be traversed through normal state transitions. Marchok et al. [43] showed that the
number of valid states only increases linearly with the number of state elements (N), whereas the
number of invalid states increases exponentially (2N − N). As a result, it becomes exponentially
difficult for the SAT solver to search through the state space and find the valid states.

5.5 Effect of DOSC XOR Gate Placement on SAT Attack

In Section 4-B, we explained DOSC XOR gate placement in the scan chain. We performed the SAT
attack on s1423 benchmark, functionally obfuscated with a 20-bit random key (RLL [4]) and the
scan chain obfuscated with a 16-bit DOSC, changing DOSC key gate placement. Placement tech-
niques and their attack results are shown in Table 5. In each of the cases, one key gate is placed
at the start and end of the chain. It can be observed that SAT attack time increases with increas-
ing spacing and timeout (timeout margin = 10 days) when key gates are distributed uniformly
throughout the chain with two gates at farthest corners.

5.6 Overhead Estimation

Table 6 shows the DOSC area and total power overhead as well as test coverage when inte-
grated into different benchmarks. We have developed an automatic tool flow to integrate DOSC

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:21

Table 5. Effect of DOSC XOR Gate Placement

Placement Configuration SAT Attack Time

Spacing = 1 6.25 h
Spacing = 2 13 h
Spacing = 3 3.88 days
Uniformly distributed time-out

Table 6. Overhead of DOSC on Different Benchmark

Benchmarks AES CORE LEON2 LEON3s LEON3mp RISC

Size of Scan Chain 530 149434 185109 108872 7606
DOSC Area Overhead 4.67% 0.0545% 0.0533% 0.0919% 1.1392%

DOSC+Functional Obfuscation
Area Overhead

5.7% 0.055% 0.0538% 0.0928% 1.151%

Power Overhead 6.15% 0.2845% 0.1973% 0.3512% 0.8189%
Test coverage 98.5% 97.83% 97.3% 97.89% 98.3%

architecture in a logic circuit. This way, we have integrated 128-bit DOSC architecture in the AES
core, Leon2, Leon3s, Leon3mp, and RISC processor. Area overhead is up to 4.67% in the case of AES
core. For other designs, the area overhead is well below 1%. Furthermore, functional obfuscation of
IP may add up to 1% additional overhead [4]. Please note that the trusted platform module (TPM)
is used for cryptographic key generation, storage, and restricted use [64] in SoC, which can be
utilized for functional obfuscation key management. Although DOSC protects functional obfus-
cation from oracle-guided attacks, functional obfuscation keys are not a part of DOSC. Therefore,
we did not include TPM in the area overhead calculation. Total power overhead is up to 6.15% in
AES core. For other designs, total power overhead is below 1%. The power overhead mentioned
in Table 6 is based on incremental area overhead due to DOSC insertion and power consumption
of those additional gates. In a practical design, power overhead would be even more negligible
as DOSC does not operate in functional mode, and test mode is run occasionally. As discussed in
Section 3, the fact that DOSC does not alter test coverage is further verified in Table 6. For all the
benchmarks, test coverage is above 97.3%. All these analyses are done on post-synthesis design. It
is noteworthy that DOSC itself has a definite structure and minimal area overhead, which makes
it 100% testable. Furthermore, dynamic scan obfuscation performed by DOSC only scrambles scan
chain contents rather than corrupting functional outputs. Therefore, DOSC does not test coverage.

6 RESULT AND DISCUSSION ON OTHER ORACLE-GUIDED ATTACKS

In this section, we discuss how DOSC thwarts oracle-guided scan-based attacks [33, 45–47, 53]
and other emerging attacks on logic locking [21–26]. A comparison of different countermeasures
against oracle-guided and oracle-less attacks is presented in Table 7.

Scan-based Attacks: DFT techniques are often vulnerable to non-invasive scan-based attacks
such as: differential attack [45, 46], resetting attack [33], flushing attack [53], and combinational
function recovering attack [47]. All these attacks require access to an active oracle. For DOSC-
inserted design, to successfully reveal the secret keys by performing known scan-based attacks,
attackers must know the position of XOR gates and how the scan content changes throughout the
chain. Consider that the number of flip-flops and XOR gates in a scan chain are N and λ, respec-

tively. The possible combination of XOR gate positions is
(

N+1
λ

)
. So, the probability of successfully

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:22 M S. Rahman et al.

Fig. 12. Waveform showing DOSC resisting oracle-guided scan-based attack, (a) upon system reset, (b) test

disable, (c) attempt to load seed in test mode, (d) system reset during test mode.

identifying the XOR gate position is
(

N+1
λ

)−1
. For each combination of the position, the attacker

must identify how the scan content changes from time to time. Therefore, the probability that an

attacker can successfully extract the right scan structure is, =
1

∑N
λ=0

(
N+1

λ

)
2λ

. Upon simplifying

using binomial theorem, scan-based attack complexity in DOSC-inserted design is O (3N). In the
worst case, if the attacker knows the XOR gate locations in the scan chain, then attack complex-
ity will be at least Ω(2λ). To experimentally illustrate how DOSC safeguards design secret from
oracle-guided scan-based attacks, we have carried out several control events on a logic locked
design scan locked dynamically with a 16-bit DOSC and presented the waveform in Figure 12.
Figure 12(a) exhibits the scenario when the chip is boot up in test mode. Usually this is done by
performing a system reset, followed by an active-high test enable event. Right after the chip is
switched in to test mode, the seed is loaded into the LFSR of DOSC from a tamper-proof mem-
ory, which starts activating the shadow chain registers one-by-one. After λ scan cycle, when the
last register of the shadow chain turns “1,” the dynamic scan obfuscation key starts scrambling
the scan chain contents, and obfuscated scan contents start showing up at the scan output. By
blocking scan output right after a system reset or seed is loaded, DOSC protects the logic-locked
design from oracle-guided resetting attack [33] and flushing attack [53]. Furthermore, to resist the
algebraic attack [65] on LFSR, the maximum allowed cycle for flushing is limited by the control
vector. When the chip is switched to the functional mode from test mode in Figure 12(b), DOSC
blocks scan out and halts the LFSR to the current state. Once the chip is switched back to the
test mode, LFSR starts generating patterns, and DOSC starts scrambling scan chain contents that
protect against differential attack [45] and combinational function recovering attack [47]. During
test mode, if new seed is loaded or a system reset is performed, then the shadow chain is instantly
reset, and the scan output is blocked for the next λ scan cycle (shown in Figures 12(c) and 12(d)).
This way, the shadow chain ensures resistance against any correlation-based attack.

ScanSAT Attack: Alrahis et al. [26] claimed they revealed LFSR seed of dynamic scan obfuscation
by iterative execution of ScanSAT attack using independent SAT attack runs. However, a major
issue in Reference [26] is that the authors perhaps misunderstood the role of the shadow chain,
which is one of the major components of DOSC. The shadow chain protects dynamic keys from
resetting attack, flushing attack, and resists dynamic scan obfuscation keys being applied to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:23

Table 7. Comparison of Different SAT-resistant Techniques

Countermeasures
Oracle-guided Attacks Oracle-less Attacks

SAT SPS AppSAT Bypass ScanSAT/DynUnlock Removal Scan-based FALL Structural Removal

SARLock � × × × N/A × × � × ×
Anti-SAT � × × × N/A × × � × ×

SFLL � � � � N/A � × × � �
Improved EFF � � � ? �/× � � � � ×

Scan Controller � � � ? �/× � � � � ×
DOSC � � � � � � � � � ×

scan chain during initial cycles. If the shadow chain is not performing its role in DOSC, then the
attacker can observe the obfuscated scan patterns in the immediate next cycles after applying seed.
In DOSC’s correct implementation, the scrambled responses start to show up in the scan-out port
only when the last flip-flop of the shadow chain becomes “1.” Before that, no scan obfuscation key
is applied in the scan chain. By that time, dynamic keys are shuffled away from the initial seed. If
DOSC is implemented properly, then the shadow chain prohibits first λ cycles (for λ-bit DOSC) of
LFSR generated dynamic scan obfuscation keys from applying into the scan chain. The SAT attack
model that we discussed in Section 5.1 to reveal LFSR seed, is conceptually similar to ScanSAT
attack [26] and DynUnlock [54]. We modeled DOSC for each cycle and performed the SAT attack to
trace back to the LFSR seed. However, due to having shadow chain considered in the attack model,
our attack complexity on DOSC-inserted design increased exponentially with LFSR seed size.

FALL Attack: FALL attack [25] on logic locking techniques use structural and functional anal-
yses of locked circuits to identify the locking key. The attack methodology uses cube stripping
and programmable functionality restoration. In this approach, authors identified sub-circuits cor-
responding to the cube stripping module, and then extracted the key using functional analysis of
these nodes. For the obvious reasons of the target adversary model, FALL attack [25] applies to the
circuits that implement stripped functionality logic locking techniques [20] and “hard code” the
unlocking key in the cube stripping unit (which leads to the vulnerability). No functional or scan
obfuscation keys are hard coded in DOSC-inserted designs, making it resistant to FALL attack.

SAT Variants—AppSAT and TimingSAT: App-SAT [24] is a variant of the original SAT at-
tack [17] attack that requires very low output corruptibility,Cr ϵ O (1

2n), where n is the number of
outputs. In case of SARLock [18] and Anti-SAT [19], n ϵ 32 − 64. In the case of DOSC, LFSR gener-
ates pseudo-random scan obfuscation keys. The probability of any LFSR output net being logic “1”
or logic “0” is 1

2 . Therefore, DOSC output corruptibility,Cr ϵ O (1
2), is far greater than App-SAT [24]

requirement, making DOSC resistant to App-SAT attack. Other variant of SAT attack that has re-
cently been proposed, namely, TimingSAT attack [60], which leverages the timing characteristics
of the existing gates in the design and embeds this into SAT instance to recover the delay key of
the Delay Locking [59] by satisfying the setup and hold timing constraint along with the proper
functioning design. The dynamic scan obfuscation that is performed by DOSC is independent of
the gate delays. Therefore, attempt of TimingSAT attack [60] on DOSC will fall into the category
of SAT attack model discussed in Sections 4 and 5 and run into exponential complexity.

SPS Attack: SPS attack [22] assumes similar threat model as SAT attack [17] that requires access
to an oracle. SPS attack computes the signal probability skew of all gates, and the gate with the
highest SPS is the suspect gate to identify SAT-resistant circuitry. For example, in the case of Anti-
SAT [19], the highest SPS (=1) occurs at the output of the Anti-SAT block [22]. In the case of
DOSC, LFSR generated dynamic keys with roughly 0.5 signal probability in its output due to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

29:24 M S. Rahman et al.

pseudo-randomness, and the scan obfuscation is performed by the XOR gate that produces zero
skew signal [22]. Therefore, signal probability of the outputs of DOSC block will be computed be
as shown in the following equation [22]:

SPS = Pr [x = 1] − 0.5 ≈ 0.5 − 0.5 ≈ 0. (12)

DOSC does not implement any one-point function-based flipping circuitry and hence introduces
no skewed signal. We have performed SPS attack on s1423 benchmark, functionally obfuscated
with a 20-bit random key (RLL [4]) and the scan chain obfuscated with a 16-bit DOSC. While the
overall design had a highest SPS of 0.938, DOSC circuitry had highest SPS of only 0.367.

Key Sensitization Attack: Key sensitization [13] is an oracle-guided attack that requires access
to the obfuscated netlist and a functional IC (oracle). The attacker tries to sensitize the key gate to
output without being masked or muted by other key gates and inputs. An attacker tries to identify
any back-to-back key gates, isolated key gates, or mutable key gates to carry out the attack. Based
on the analysis, the attacker tries to generate a golden test pattern that can sensitize the target
key gate’s effect. We carried out a key sensitization attack on the s1423 benchmark functionally
obfuscated with a 20-bit random key (RLL [4]) and the scan chain obfuscated with a 16-bit DOSC.
However, due to the scan chain structure, each key gates are at the fan-out cone of the other key
gates. Therefore, DOSC key gates cannot be isolated or muted. Moreover, locking the scan chain
makes the attacker’s goal to generate a golden pattern and determine the key even more difficult.

Bypass Attack: Xiaolin et al. [21] presented bypass attack against SARLock [18] and Anti-
SAT [19] that presumes scan access to attack large sequential circuits. DOSC keeps scan access
available only to authorized users by dynamically obfuscating scan chain. Thereby, DOSC resists
bypass attack.

Removal Attack: Removal attack [23] attempts to retrieve the original circuit by removing or
bypassing the SAT attack resistant solution in the circuitry. Removal attack [23] launches SPS
attack [22], AppSAT attack [24], and sensitization-guided SAT attack to identify and remove the
protection circuitry by taking advantages of structural traces and bias in the design. In the oracle-
guided attack threat model, a working unlocked chip (oracle) is required along with the locked
netlist to verify the extracted secret key. In the case of DOSC-inserted design the structure of
scan obfuscation circuitry is well known to the attacker and removing DOSC from the oracle will
restrain the attacker from verifying the correctness of the identified secret key. However, removing
DOSC from the locked netlist (e.g., utilizing structural analysis [44]) is possible, which falls under
the oracle-less attack threat model and out-of-scope for this article.

7 CONCLUSION AND FUTURE WORK

In this article, we have evaluated, in details, the security of DOSC scheme that restricts effective
scan access to authorized users to protect against oracle-guided attacks and demonstrated both
mathematically and experimentally how this architecture can combat SAT attack for extracting
logic obfuscation keys. We have performed SAT attack on different DOSC-inserted benchmarks
and shown that the time increases exponentially with DOSC key length. This article focused on
LFSR as a pseudo-random key generator in DOSC architecture. Other alternatives like non-linear

feedback shift register, feed forward LFSR, and so on, and their security analysis could be a possible
expansion. DOSC can secure designs with scan compression, scan compaction, and advanced DFT
structures by distributing XOR gates throughout the compressed chains. The pattern generation
and security analysis of DOSC in such complex design scenario is considered for future study. The
experimental results of SAT attack on DOSC-inserted design that is presented in Section 5 is indeed
based on modern SAT solvers, e.g., lingeling [49] and CryptoMinisat [50]. These SAT solvers are

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

Security Assessment of DOSC Against Oracle-guided Attacks 29:25

based on the advanced CDCL algorithm inspired by the older DPLL algorithm. There has been
further evolution of SAT solvers where a combination of machine learning-based heuristics and
the CDCL algorithm is utilized. Analysis of the attack complexity of DOSC-inserted design based
on state-of-the-art SAT solvers is part of our ongoing research.

REFERENCES

[1] B. Shakya et al. 2017. Introduction to hardware obfuscation: Motivation, methods and evaluation. In Hardware Pro-

tection through Obfuscation. Springer, 3–32.

[2] A. B. Kahng et al. 1998. Watermarking techniques for intellectual property protection. In Proceedings of the 35th

Annual Annual Design Automation Conference (DAC’98). ACM, 776–781.

[3] IEEE. 2014. IEEE recommended practice for encryption and management of electronic design intellectual property.

Retrieved from https://standards.ieee.org/findstds/standard/1735-2014.html.

[4] J. A. Roy et al. 2008. Epic: Ending piracy of integrated circuits. In Proceedings of the Conference on Design, Automation

and Test in Europe. ACM, 1069–1074.

[5] R. S. Chakraborty and S. Bhunia. 2008. Hardware protection and authentication through netlist level obfuscation. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’08). IEEE Press, 674–677.

[6] R. S. Chakraborty and S. Bhunia. 2009. Harpoon: An obfuscation-based SoC design methodology for hardware pro-

tection. IEEE TCAD Circ. Syst. 28, 10 (2009), 1493–1502.

[7] J. Rajendran et al. 2013. Security analysis of integrated circuit camouflaging. In Proceedings of the ACM SIGSAC Con-

ference on Computer and Communications Security. ACM, 709–720.

[8] R. W. Jarvis and M. G. Mcintyre. 2007. Split manufacturing method for advanced semiconductor circuits. U.S. Patent

7,195,931.

[9] M. T. Rahman et al. 2014. CSST: Preventing distribution of unlicensed and rejected ICs by untrusted foundry and

assembly. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance (DFT’14). IEEE, 46–51.

[10] A. Chhotaray et al. 2017. Standardizing bad cryptographic practice. In Proceedings of the ACM Conference on Computer

and Communications Security (CCS’17). ACM, 1533–1546.

[11] J. J. Rajendran et al. 2013. Is split manufacturing secure? In Proceedings of the Conference on Design, Automation and

Test in Europe. EDA Consortium, 1259–1264.

[12] J. Rajendran et al. 2013. Fault analysis-based logic encryption. IEEE Trans. Comput. 64, 2 (2013), 410–424.

[13] J. Rajendran et al. 2012. Security analysis of logic obfuscation. In Proceedings of the 49th Annual Design Automation

Conference. ACM, 83–89.

[14] J. Robertson and M. Riley. 2018. The big hack: How china used a tiny chip to infiltrate U.S. companies. Bloomberg.

[15] DARPA. 2019. Automatic implementation of secure silicon. Retrieved from https://www.darpa.mil/news-events/

2019-03-25.

[16] DARPA. 2017. Darpa electronics resurgence initiative. https://www.darpa.mil/work-with-us/electronics-resurgence-

initiative.

[17] P. Subramanyan et al. 2015. Evaluating the security of logic encryption algorithms. In Proceedings of the IEEE Inter-

national Symposium on Hardware-Oriented Security and Trust (HOST’15). IEEE, 137–143.

[18] M. Yasin et al. 2016. Sarlock: Sat attack resistant logic locking. In Proceedings of the IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST’16). IEEE, 236–241.

[19] Y. Xie and A. Srivastava. 2019. Anti-sat: Mitigating sat attack on logic locking. IEEE Trans. Integr. Circ. Syst. 38, 2

(2019), 199–207.

[20] M. Yasin et al. 2017. Provably secure logic locking: From theory to practice. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS’17). ACM, 1601–1618.

[21] X. Xu et al. 2017. Novel bypass attack and BDD-based tradeoff analysis against all known logic locking attacks. In

Proceedings of the International Conference on Cryptographic Hardware and Embedded Systems. Springer, 189–210.

[22] M. Yasin et al. 2017. Security analysis of anti-sat. In Proceedings of the 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC’17). IEEE, 342–347.

[23] M. Yasin et al. 2017. Removal attacks on logic locking and camouflaging techniques. IEEE Trans. Emerg. Top. Comput.

8, 2 (2017), 517–532.

[24] K. Shamsi et al. 2017. Appsat: Approximately deobfuscating integrated circuits. In Proceedings of the IEEE International

Symposium on Hardware Oriented Security and Trust (HOST’17). IEEE, 95–100.

[25] D. Sirone and P. Subramanyan. 2019. Functional analysis attacks on logic locking. In Proceedings of the Design, Au-

tomation, and Test in Europe Conference (DATE’19). IEEE, 936–939.

[26] L. Alrahis et al. 2019. ScanSAT: Unlocking static and dynamic scan obfuscation. In IEEE Trans. Emerg. Top. Comput.

(2019). https://doi.org/10.1109/TETC.2019.2940750

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

https://standards.ieee.org/findstds/standard/1735-2014.html
https://www.darpa.mil/news-events/2019-03-25
https://www.darpa.mil/news-events/2019-03-25
https://www.darpa.mil/work-with-us/electronics-resurgence-initiative
https://www.darpa.mil/work-with-us/electronics-resurgence-initiative
https://doi.org/10.1109/TETC.2019.2940750

29:26 M S. Rahman et al.

[27] X. Wang et al. 2017. Secure scan and test using obfuscation throughout supply chain. IEEE Trans. Integr. Circ. Syst.

37, 9 (2017), 1867–1880.

[28] A. Cui et al. 2016. Static and dynamic obfuscations of scan data against scan-based side-channel attacks. IEEE TIFS

12, 2 (2016), 363–376.

[29] S. M. Plaza and I. L. Markov. 2014. Protecting integrated circuits from piracy with test-aware logic locking. In Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14). IEEE Press, 262–269.

[30] M. El Massad et al. 2015. Integrated circuit (ic) decamouflaging: Reverse engineering camouflaged ICs within minutes.

In Proceedings of the Network and Distributed System Security Symposium (NDSS’15). 1–14.

[31] R. Karmakar et al. 2018. Encrypt flip-flop: A novel logic encryption technique for sequential circuits. Retrieved from

https://arXiv:1801.04961.

[32] K. Kursawe et al. 2009. Reconfigurable physical unclonable functions-enabling technology for tamper-resistant stor-

age. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust (HOST’09). IEEE,

22–29.

[33] G. Sengar et al. 2007. Secured flipped scan-chain model for crypto-architecture. IEEE Trans. Integr. Circ. Syst. 26, 11

(2007), 2080–2084.

[34] F. Brglez et al. 1989. Combinational profiles of sequential benchmark circuits. In Proceedings of the IEEE International

Symposium on Circuits and Systems. 1929–1934.

[35] F. Corno et al. 2000. Rt-level itc’99 benchmarks and first atpg results. IEEE DTC 17, 3 (2000), 44–53.

[36] C. McDonald et al. 2008. An algebraic analysis of trivium ciphers based on the boolean satisfiability problem. In

Proceedings of the 4th International Workshop on Boolean Functions: Cryptography and Applications. 173–184.

[37] G. V. Bard et al. 2007. Efficient methods for conversion and solution of sparse systems of low-degree multivariate

polynomials over gf (2) via sat-solvers. https://eprint.iacr.org/2007/024.

[38] A. Klein. 2013. Linear feedback shift registers. In Stream Ciphers. Springer, 17–58.

[39] C. Coarfa et al. 2000. Random 3-sat: The plot thickens. In Proceedings of the International Conference on Principles and

Practice of Constraint Programming. Springer, 143–159.

[40] G. S. Tseitin. 1983. On the complexity of derivation in propositional calculus. In Automation of Reasoning. Springer,

466–483.

[41] J. C.-M. Li and M. S. Hsiao. 2009. Fault simulation and test generation. In Electronic Design Automation. Elsevier,

851–917.

[42] M. Cygan et al. 2016. On problems as hard as cnf-sat. ACM Trans. Algor. 12, 3 (2016), 41.

[43] T. E. Marchok et al. 1995. Complexity of sequential ATPG. In Proceedings of the European Design and Test Conference

(ED&TC’95). IEEE, 252–261.

[44] P. Chakraborty et al. 2018. Sail: Machine learning guided structural analysis attack on hardware obfuscation. In

Proceedings of the IEEE Asian Hardware-Oriented Security and Trust Conference (AsianHOST’18). IEEE, 56–61.

[45] E. Biham and A. Shamir. 1997. Differential fault analysis of secret key cryptosystems. In Proceedings of the Annual

International Cryptology Conference. Springer, 513–525.

[46] J. D. Rolt et al. 2013. A novel differential scan attack on advanced dft structures. ACM Trans. Design Autom. Electr.

Syst. 18, 4 (2013), 58.

[47] L. Azriel et al. 2016. Exploiting the scan side channel for reverse engineering of a vlsi device. Technical Report,

Technion, Israel Institute of Technology. CCIT Report 897.

[48] El Massad et al. 2017. Reverse engineering camouflaged sequential circuits without scan access. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD’17). 33–40.

[49] Armin Biere. 2013. Lingeling, plingeling and treengeling entering the SAT competition 2013. In Proceedings of the

SAT Competition.

[50] Mate Soos. 2016. The CryptoMiniSat 5 set of solvers at SAT competition 2016. In Proceedings of the SAT Competition.

[51] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with conflict-clause minimization. In Proceedings

of the International Conference on Theory and Applications of Satisfiability Testing (SAT’05). 1–2.

[52] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. 1999. NuSMV: A new symbolic model verifier. In Proceedings of

the International Conference on Computer Aided Verification. 495–499.

[53] Y. Atobe et al. 2012. Dynamically changeable secure scan architecture against scan-based side channel attack. In

Proceedings of the IEEE International SoC Design Conference (ISOCC’12). 155–158.

[54] N. Limaye et al. 2020. DynUnlock: Unlocking scan chains obfuscated using dynamic keys. Retrieved from https:

//arXiv:2001.06724.

[55] A. Sengupta et al. 2018. ATPG-based cost-effective, secure logic locking. In Proceedings of the IEEE 36th Very Large-

scale Integration Test Symposium (VTS’18). 1–6.

[56] A. Jain et al. 2020. Atpg-guided fault injection attacks on logic locking. Retrieved from https://arXiv:2007.10512.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

https://arXiv:1801.04961
https://eprint.iacr.org/2007/024
https://arXiv:2001.06724
https://arXiv:2001.06724
https://arXiv:2007.10512

Security Assessment of DOSC Against Oracle-guided Attacks 29:27

[57] R. Karmakar et al. 2019. Efficient key-gate placement and dynamic scan obfuscation towards robust logic encryption.

IEEE Trans. Emerg. Topics Comput. (2019). https://doi.org/10.1109/TETC.2019.2963094

[58] Q. Nguyen et al. 2020. A secure scan controller for protecting logic locking. In Proceedings of the IEEE 26th International

Symposium on On-Line Testing and Robust System Design (IOLTS’20). IEEE.

[59] Y. Xie et al. 2017. Delay locking: Security enhancement of logic locking against ic counterfeiting and overproduction.

In Proceedings of the 54th Annual Design Automation Conference.

[60] A. Chakraborty et al. 2020. Evaluating the security of delay-locked circuits. IEEE Trans. Comput.-Aided Design Integr.

Circ. Syst. (2020). https://doi.org/10.1109/TCAD.2020.3008843

[61] Muhammad Yasin et al. 2017. What to lock? Functional and parametric locking. In Proceedings of the on Great Lakes

Symposium on Very Large-scale Integration (VLSI’17).

[62] Muhammad Yasin et al. 2016. Activation of logic encrypted chips: Pre-test or post-test? In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE’16). IEEE.

[63] Ujjwal Guin et al. 2016. FORTIS: A comprehensive solution for establishing forward trust for protecting IPs and ICs.

ACM Trans. Design Autom. Electr. Syst. 21, 4 (2016), 1–20.

[64] Tolga Acar et al. 2015. Key management using trusted platform modules. U.S. Patent No. 9,026,805.

[65] Nicolas T. Courtois and Willi Meier. 2003. Algebraic attacks on stream ciphers with linear feedback. In Proceedings of

the International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin.

Received June 2020; revised October 2020; accepted December 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 4, Article 29. Pub. date: March 2021.

https://doi.org/10.1109/TETC.2019.2963094
https://doi.org/10.1109/TCAD.2020.3008843

