
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3063998, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

SoFI: Security Property-Driven Vulnerability
Assessments of ICs Against Fault-Injection Attacks
Huanyu Wang, Student Member, IEEE, Henian Li, Student Member, IEEE, Fahim Rahman, Member, IEEE, Mark

M. Tehranipoor, Fellow, IEEE, and Farimah Farahmandi, Member, IEEE

Abstract—Fault-injection attacks have become a major concern
for hardware designs, primarily due to their powerful capability
in tampering with critical locations in a device to cause violation
of its integrity, confidentiality, and availability. Researchers have
proposed a number of physical and architectural countermea-
sures against fault-injection attacks; however, these techniques
usually come with large overhead and design efforts making them
difficult to use in practice. In addition, the current electronic
design automation (EDA) tools are not fully equipped to sup-
port vulnerability assessment against fault-injection attacks at
the design-time for secure hardware development. To perform
a design-time (i.e., pre-silicon) evaluation of such attacks, a
designer should be aware of various security vulnerabilities and
must perform a tedious manual design review, which is time-
consuming and hard to ensure effectiveness. Therefore, it is
very important to develop an automatic assessment framework
to identify the most security-critical locations in a design to
fault-injection attacks and place emphasis on protecting those
locations. In this paper, we propose an automated framework for
fault-injection vulnerability assessment of designs at gate-level,
while considering the design-specific security properties using
novel models and metrics. The proposed framework identifies
the faults that can violate the security properties of the design.
As a result, applying local countermeasures will be more effective
and the protection overhead will be reduced significantly. Our
experimental results on the security properties of AES, RSA,
and SHA implementations show that the security threat from
fault-injection attacks can be significantly mitigated by protecting
the identified critical locations, which are less than 0.6% of the
design.

Index Terms—Hardware security, fault-injection attack, secu-
rity property, vulnerability assessment, computer-aided design.

I. INTRODUCTION

With the emergence of the Internet of Things (IoTs) regime,
promising exciting new applications from smart cities to
connected autonomous vehicles, security and privacy have
emerged as major design challenges. Within the connected
computing and sensing components, or the things in an
IoT system, notably the cryptographic hardware and field
programmable gate arrays (FPGAs) in embedded systems,
artificial intelligence (AI) accelerators, digital signal proces-
sors (DSPs), and microprocessors are all highly vulnerable
to diverse forms of physical and non-physical attacks. These
attacks can effectively bypass the security mechanisms built
in these devices and put systems at risk. Among them, fault-
injection attacks have become a major concern to the computer
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security community, primarily due to their powerful capability
in tampering with vulnerable locations in a device and ability
for extracting its secrets. Fault-injection attacks can danger-
ously break the mathematical strength and robustness of the
implemented security mechanisms.

In a fault-injection attack, the faults are intentionally in-
jected in a system to compromise its security by causing the
denial of service (DoS), achieving illegal authentication, or
facilitating leakage of secrets in the system. Fault-injection
attacks can be non-invasive (e.g., clock glitching or voltage
glitching), semi-invasive (e.g., local heating or laser), or in-
vasive (e.g., focused ion beam), which can be carried out
by a variety of techniques and instruments with different
cost and precision [1], [2]. Different forms of fault-injection
attacks have been successfully demonstrated by researchers
in academia as well as practitioners in the industry on many
security-critical applications. This includes AES, DES, and
RSA encryption algorithms [1], [3], error correction code
(ECC) [4], radio-frequency identification (RFID) [5], virtual
machines [6], microcontrollers [7], as well as analog sensors
[8]. Almost all platforms, such as smart cards, system-on-chips
(SoCs), FPGA-based embedded systems, and IoT devices, are
vulnerable to fault-injection attacks, which corroborates the
criticality of this attack vector [9], [10].

To help prevent fault-injection attacks, many different coun-
termeasures have been proposed in the past decade. Typically,
there are two major categories of countermeasures: (i) intru-
sion detection and (ii) error detection. The first approach relies
on detecting the physical facilitators of fault-injection attacks
in the design and making the design physically inaccessible,
which requires a tamper-proof packaging for the design as
well as sensors to detect any physical tampering attempts. This
approach has been applied to the IBM 4764 [11], which is an
exclusive cryptographic co-processor. However, such approach
would be expensive with a large area/performance overhead
and design effort, which makes it inapplicable to common
industrial devices and IoTs. The other more cost-effective
approach against fault-injection attack is error detection, which
enables the design to detect the injected faults at runtime. One
example of such approach is to use either hardware or time
redundancy. However, these approaches may involve 100%
area or performance overhead, making it difficult to deploy
in practice.

Additionally, there is limited research in assessing the
susceptibility of any design to fault-injection attacks at an
early hardware design stage, e.g., at gate-level. So, we lack
fully equipped automated tools to assess which location of
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the design might be likely injected with faults to result in
security violation or leakage of secret information. There is
no available well-defined method for the designers to identify
a part of the design as the priority to be protected against
fault-injection attacks. As a result, the designers often opt for
a solution that aims at protecting the whole design, which
might not be necessary and practically feasible, and will
require significant resources on the chip. Therefore, it is
paramount to develop a technique for a detailed and accurate
assessment of the design vulnerability to fault-injection attacks
at the pre-silicon stage. With such assessment, more efficient
local countermeasures can be developed to reduce the overall
protection overhead on area, power, and performance while
ensuring security.

In addition, from an attacker’s point of view, a random
fault would probably result in a random output, which may
not necessarily help with the attack. Only the faults that can
violate security properties, e.g., bypass the internal rounds
of an AES, would facilitate a successful attack. If there are
faults injected in the design, but there is no security property
violated, the threat from the injected faults would be very
limited. Therefore, the fault-injection vulnerability assessment
should be guided by a set of security properties in the design.
By guaranteeing that no security property will be violated by
injecting faults, the resiliency and security of the design would
be significantly increased.

Further, fault-injection attack assessment should be per-
formed before the chips are fabricated or the design is imple-
mented in an FPGA. Otherwise, it would significantly impact
the overall cost of making it secure. Similarly, a vulnerability
to fault-injection attack identified at a later stage in the system
life cycle could have a substantial cost impact. Hence, the
fault-injection attack assessment must be carried out at the
early stage of the design process, e.g., gate-level. At the early
stages, a designer has much more flexibility in mitigating
the threat with a lower cost. However, there is no automated
framework to perform a comprehensive fault-injection attack
assessment. The current electronic design automation (EDA)
tools are not equipped to support fault-injection attack vulnera-
bility assessment. Therefore, in order to perform a design-time
evaluation of such attacks, a designer must not only know
about the security requirements of the design but also be able
to perform a tedious manual design review, which is time-
consuming and hard to guarantee the accuracy of results.

In this paper, for the first time to our knowledge, we present
a security property-driven vulnerability assessment framework
at gate-level against fault-injection attacks in an attempt to
bridge the gap between the need for automated security
assessment tools and the capability of existing computer-aided
design (CAD) tools commonly used in practice. We make the
following distinctive contributions in this paper:

• We develop an automated framework, called security
property-driven vulnerability assessments of ICs against
fault-injection attacks (SoFI), for designs at gate-level,
which can be applied to both FPGA and ASIC.

• The SoFI assessment framework is driven by pre-defined
security properties that need to be preserved in order to

maintain the integrity, confidentiality, and availability of
the design.

• SoFI can identify the most vulnerable locations to fault-
injection attacks in the design so that by protecting these
locations no security properties would be violated.

• A metric is developed to characterize fault models and
generate the corresponding global or local fault list in
SoFI.

• The fault feasibility metric is integrated into SoFI to
evaluate the feasibility of the fault using a setup-time
violation based fault-injection technique.

• The SoFI framework can provide design suggestions
against local fault-injection techniques for later stages in
the IC design flow (e.g., physical design).

• The SoFI framework is evaluated on different benchmarks
with different security properties.

The rest of the paper is organized as follows: in Section
II, we provide background on fault-injection techniques and
common countermeasures. In Section III, we present the SoFI
framework in details. The experimental results are provided in
Section IV. Finally, we conclude the paper in Section V.

II. BACKGROUND

A. Fault-injection Techniques

There are a number of fault-injection techniques that have
been developed in order to maliciously alter the correct func-
tionality of a computing device. In the case of non-invasive
fault-injection attacks, which are inexpensive and the more
frequent ones, one can perform clock or voltage glitching
or apply electromagnetic (EM) [12]–[14]. For semi-invasive
attacks, one can apply optical fault-injection techniques [15].
Finally, in the case of invasive attacks, active fault injections
can be done by physical probing [16]–[18]. The most common
fault-injection techniques are briefly discussed in the follow-
ing:

1) Clock Glitching: One very low-cost and non-invasive
technique to inject faults is to tamper with the clock signal to
cause either setup or hold time violations [19]. For example,
the length of a clock cycle can be shortened by driving a
premature toggling of the clock signal, as shown in Fig. 1(a).
Fig. 1(b) shows a typical sequential logic path. In normal
operation, the clock cycle (TCLK) should be longer than the
maximum path delay (τ ) of the combinational logic to make

Fig. 1: (a) Glitch in the clock signal, (b) A typical sequential
logic path.
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sure that the correct/stable value is captured by the sequential
element. However, when a clock glitch occurs, Tg is less than
τ , so register B may capture the wrong data, in which a fault
is injected and will propagate in the circuit. Such a glitch
in a processor can result in skipping an instruction or storing
incorrect data in the memory modules [20]. In addition, a clock
glitch may cause the wrong data to be latched in flip-flops or
registers. For example, it has been shown that if one bit of
the key is not latched correctly by the key register in a crypto
engine, this key bit can be deduced by comparing the faulty
and the correct output of the crypto engine. Such faults are
transient so that they can be injected without any footprint of
tampering [12].

2) Voltage Glitching: Another low-cost technique is tam-
pering with the power supply of a device. For example, one
can run the chip with a depleted power supply so that some
high threshold voltage transistors would never be open, thus
transient faults are injected in the device. Another method is
to leverage power spikes so that the setup time requirement
of flip-flops may be violated similar to clock glitching, which
can cause a processor to skip an instruction or a crypto engine
to skip a round of encryption/decryption. This fault-injection
technique is commonly utilized to tamper with a program
counter, or a loop bound [21]. Usually, voltage and clock
glitching are used together to increase the possibility of setup
time violation of flip-flops.

3) Electromagnetic (EM): An external electromagnetic
field can also be exploited to inject faults. It can cause
malfunctioning of a chip or flip memory cell(s). Eddy currents
on the chip surface can be induced by the EM field, which can
cause a single-bit fault [22]. For example, a gas-lighter can be
used to inject EM faults at a very low cost [23]. The single-bit
fault injected by EM can be used to facilitate the propagation
of secret data, e.g., keys, to observable nodes [22].

4) Light and Laser: A strong and precisely focused light
beam or laser can be exploited to induce alterations in one
or more logic gates. As shown in Fig. 2, a laser can create
electron-hole pairs at the drain of a NMOS and thus create a
current pulse. The generated current pulse will charge the load
capacitance and create a voltage pulse as a transient fault to

Fig. 2: Impact of laser on a NMOS transistor [24]. Electron-
hole pairs are generated at the drain of the NMOS by the laser,
which will create a current through the transistors and inject
a transient fault to propagate in the circuit.

be further propagated in the circuit. For example, by targeting
one transistor in static random-access memory (SRAM) cell,
the cell can be flipped up or down at will [25]. Hence, it is
possible for attackers to flip one of the key bits loaded in the
cache and deduce the value of that key bit by comparing the
output of a crypto process. However, the spot size of the light
is physically limited by the wavelength of the photons. It is
no longer possible to hit a single SRAM cell using the current
optical technologies since the width of the gate dielectric in
the advanced technology nodes is now an order of magnitude
smaller than the shortest wavelength of visible light. However,
it does not necessarily imply the inability to inject a single-bit
fault. Agoyan et al., [26] demonstrated how to inject a single-
bit fault in a reproducible way, despite the fact that the optical
precision of the equipment was not able to target the smallest
features of the chip [24].

5) Focused Ion Beam (FIB): The most accurate fault-
injection technique uses a focused ion beam, which is a
powerful instrument commonly used in the development, man-
ufacturing, and reworking (editing) of semiconductor devices
and integrated circuits (ICs) [17], [18]. FIBs use ions at the low
beam and high beam currents for imaging surface topology and
site-specific milling/deposition, respectively. These capabili-
ties allow designers to cut or add traces to the substrate within
a chip, thereby enabling them to redirect signals, modify trace
paths, and add/remove circuits. An attacker can use FIB to
build a conducting path from chip surface to the internal net
so that signals carried on the net can be extracted through
this path (probing attack) and transient faults can be injected
through this path as well (fault-injection attack).

B. Fault-injection Countermeasures

The countermeasures evolve over time with the sophisti-
cation of fault-injection attacks. Since any countermeasure
comes at a cost, in practice, they are selected with a good
balance between overhead and security. In fact, many coun-
termeasures are developed to make an attack sufficiently
expensive for the attacker but not impossible [15]. There are
two major categories to protect a design against fault-injection
attacks: intrusion detection and error detection.

1) Intrusion Detection: Countermeasures in this category
are developed to detect any attempted tampering with the
device and make the device physically inaccessible. They
are developed to prevent a specific fault-injection technique.
One notable example is using shields (passive or active), in
which wire mesh is used to cover a part of or the entire chip
to detect an optical fault or probing attacks [17], [18]. In
addition, analog sensors can be applied in the chip to detect
different fault-injection attacks. For example, light sensors and
frequency detectors are used to detect optical fault-injection
and clock glitching, respectively [27]. The main drawback
of the intrusion detection-based countermeasures is their high
cost with large overhead and design efforts.

2) Error Detection: This approach modifies the design
to allow the detection of injected faults at the algorithm
level. One common method is concurrent error detection
(CED), which can check the correctness of the algorithm
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by introducing redundancy. Typically, there are three types
of redundancy in terms of resources: hardware, time, and
information [28]. As an example, hardware redundancy indi-
cates adding extra hardware into the device to either detect or
correct the impacts of the faults injected. The most common
example is the triple modular redundant (TMR) structure
[29] which has three identical modules whose outputs are
voted for correct functionality. Time redundancy can also be
utilized to detect faults by re-running the same process on
the same hardware. However, these approaches introduce at
least 3X/2X area/performance overhead, respectively, which
is too high to be practical for large-scale complex designs
[30]. As another example, information redundancy is based
on error detection codes (EDCs) or error correction codes
(ECCs), which may require a smaller overhead. The main
drawback of the EDC/ECC based countermeasures, however,
is possible lower fault coverage because not every combination
of errors can be detected, e.g., parity-based EDCs are capable
of detecting any fault that consists of an odd number of bit
errors. However, an even number of bit errors occurring in a
single byte will not be detected [31].

C. Related Work

Several researches have been reported to evaluate the sus-
ceptibility of a design to fault-injection attacks [32]–[36].
However, these frameworks are at the algorithm or software
level without considering the feasibility of the faults and the
different hardware implementations. For those gate-level fault
evaluation tools, VerFI [37] is proposed to examine the desired
fault detection/correction capabilities and reveal undetected
faults, however, the vulnerability of the original design is not
assessed. [38] is actually a fault simulator without automated
security assessment. SOLOMON [39] uses formal methods
to map vulnerable regions in the cipher algorithm to specific
locations in the hardware, however, it can only be applied to
crypto cores against DFA. Further, almost all these approaches
can be only applied to one type of designs, such as block
cipher with a focus on DFA-based attack, which are difficult
to be applied to other designs. In fact, there can be many
fault attacks on the control logic, e.g., FSMs, to result in
confidentiality, integrity, or availability issues.

D. Threat Model

In this paper, we restrict our focus to the vulnerability
assessment of common fault-injection attacks (e.g., clock
glitch or laser) at gate-level. An adversary’s objective is to
tamper with security-critical locations in the design using one
of the fault-injection techniques to violate targeted security
properties of the design, such as confidentiality or integrity.
To offer a comprehensive solution, we assume a strong attack
model where the adversary has full gate-level information of
the design from various sources, such as untrusted foundry,
performing reverse engineering, stealing the IP, or cooperating
with a rogue employee in the design house. We also assume
that the attacker is able to achieve the highest theoretical
resolution that each fault-injection technique can perform,
e.g., clock glitching can inject a fault in a specific register

by extending the data path delay of that register. Therefore,
the actual vulnerable locations from a practical fault-injection
attack (e.g., lower resolution) standpoint would always be a
subset of the identified critical locations. Hence, the actual
resilience of the design against fault-injection attacks may be
stronger than the assessment provided by the SoFI framework.

III. SOFI FRAMEWORK

Although fault-injection has received significant attention
over the past decade as a strong threat on security critical
designs and applications, unfortunately there has been no
comprehensive study to formally model the faults as well as
their effects induced by different fault-injection techniques. In
addition, during the propagation of the faults injected in the
system, there are vulnerable locations that attackers expect to
target to either cause confidentiality or integrity violations. For
example, the attacker can inject faults during the initial round
in the finite state machine (FSM) of the AES controller to skip
the intermediate rounds and go to the final round directly so
that the plaintext or key could be leaked. The faults can be
injected directly at the FSM state registers or their fan-in cone
cells. In the case of a microprocessor, an attacker may want
to disable a password checking function, obtain access to the
protected area of the memory, obtain access to the shared bus
when sensitive information is being transferred, etc. Hence, it
is critically important that designers are able to define a set
of security properties (SP) that they should be enforced to
preserve the confidentiality, integrity, and availability of the
design. However, fault-injection would enable the violation of
those properties. Fault-injection is carried out for any or all
of the three features of a secure device, i.e., confidentiality
violation, integrity violation, or denial of service (DoS).

If a fault injected in a design does not violate any of these
secure design features, it will not be an effective fault-injection
attack. Hence, to verify the effectiveness of fault-injection
attack, in this work, we focus on security properties. SoFI
targets faults on security properties in the design, making the
analysis localized by focusing only on the part of the circuit
for which the security property is being checked.

The overall flow for the SoFI framework is shown in Fig. 3.
Generally speaking, the critical locations to fault-injection
attacks are identified by checking whether any security proper-
ties can be violated if the faults are injected at these locations.
The more critical locations identified from the design, the
more vulnerable the design is to fault-injection attacks. The
SoFI framework takes fault-injection technique’s specification,
executable security properties, and the gate-level design as the
inputs (Section III-A illustrates the requirement of executable
security properties for fault-injection assessment). First, to
map a specific fault-injection technique (e.g., clock glitch or
laser) in the assessment, the fault models are characterized
from the specification of the targeted fault-injection techniques
and a fault list is generated based on the fault model and the
executable security properties (discussed in Sections III-B and
III-C in details). Then, the fault simulation is performed and
the critical locations are identified (illustrated in Sections III-D
and III-E). Finally, the fault feasibility analysis is conducted
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Fig. 3: SoFI: our security property driven fault-injection vul-
nerability assessment framework.

to check whether the faults can be practically implemented by
the specific fault-injection technique (as illustrated in Section
III-F).

A. Executable Security Properties

As defined in [40], a security asset in a chip is a value
that is worth protecting against different adversaries. It can
be either tangible or intangible, such as passwords or one’s
fingerprint that defines the accessibility to a mobile phone. For
integrated circuits, the asset could be encryption keys, obfusca-
tion keys, device configurations, manufacture’s firmware, com-
munication credentials, configuration bits, etc. These assets
should be properly protected against various attacks to avoid
any secret leakage, illegal authentication, loss of profit, or
reputation decline. Therefore, we need corresponding security
properties (SP) specifying the secure utilization of the design
as a guidance to protect these assets [40], [41] and improve
the scalability of the proposed SoFI framework. Further,
by tampering security-critical locations using fault-injection
techniques, the attacker can violate the security properties and
achieve privileges to leak/tamper asset information. Hence,
the capability to violate one of the security properties can be
utilized as the criteria to identify the critical locations. If the
injected faults cannot violate any of the security properties,
the underlying threat is much less of a concern compared
to the faults that can violate properties. This can help with
prioritizing the critical faults and locations, and to develop ef-
fective and resource-constrained local countermeasures. Note
that security properties are important inputs to SoFI, however,
how to identify them is out of the scope of this paper.

As an input to SoFI, the appropriate selection of security
properties dictates the quality of the assessment because not all
security properties are suitable for fault-injection vulnerability
assessment. For example, the security property described in
[40], “exposed area [18] to probing attacks should be lower
than a threshold value”, is a good security property to mitigate
the threat from probing attacks at the layout level. However,

it is not suitable for our fault-injection vulnerability assess-
ment since this security property cannot be violated by fault-
injection attacks; further, this property is at layout level instead
of the gate level. Therefore, one requirement for identifying
the security property subset in this work is that the security
property should be related to or can be violated by one of the
fault-injection attacks.

In addition, most of the security properties available in
the literature [40], [41] are described at a high level (often
using natural language) without detailed metrics. It may not
be clear how to check if the security property is violated in
the target level of abstraction of the design. Therefore, the
second requirement for the security property in this work
is that the security property should be converted to one or
more executable formal presentations with explicit verification
metrics. For example, the security property, “AES internal
rounds cannot be skipped and directly jumped to the final
round”, can be converted to an executable one as described
below.

SP1: The done signal that indicates the completion of ten
AES rounds cannot be raised in the 1st round.

In this case, the time (1st AES round) and the location (done
signal) to check the security property violation are clear, which
is more executable than the original one. Note that the similar
properties can be extracted for any intermediate round.

If SP1 is violated, the 1st round AES results would be
leaked at the primary output in which the encryption strength
provided by the AES algorithm would be significantly reduced
[41]. Fig. 4(a) shows the extracted fan-in circuit of the done
signal which is a 4-bit counter. Fig. 4(b) shows the waveform
of SP1 in AES. done is the correct waveform in the normal
operation while done’ is the faulty waveform with the security
property violated. When the ld signal is raised at clock cycle
24, the keys and plaintext are loaded in the design and the AES
encryption operation starts. It takes 2 clock cycles (25 and 26)
to initialize the key expansion and the 1st AES round starts
from the next cycle (cycle 27). In the normal operation, it takes
10 rounds to encrypt the plaintext, so the done signal will be
raised 9 clock cycles after the 1st round (cycle 36) as shown

Fig. 4: (a) Fan-in circuit, (b) waveform of SP1.
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in Fig. 4(b). However, when faults are injected in the security
property fan-in circuit as shown in Fig. 4(a) and the done
signal is raised 3 clock cycles after the AES keys are loaded
(cycle 27), which means the output can be read, however, it is
not fully encrypted. Therefore, the security property is violated
and the strength of the encryption algorithm is compromised.
The goal of the fault simulation is to identify those faults that
can enable this security property violation.

Based on one security property, more variant security
properties can be created to improve the completeness of
evaluation. For example, SP1 can be extended: the done signal
that indicates the completion of ten AES rounds cannot be
raised in 1 − 7 rounds. Similar to the spatial and temporal
locality concept in cache, if violating a security property at
time t and location l would result in the leakage of asset
information, violating a similar security property at time t+1
and location l+1 would be likely to leak asset information as
well. Therefore, by adding more variant security properties,
the completeness of the evaluation can be improved.

B. Fault Model
There are many techniques to inject faults in a system, such

as clock/voltage glitching, EM, laser beam, or FIB as discussed
in Section II-A. The mechanism of fault generation from these
techniques are fundamentally different. Hence, the format and
impact of the faults injected by these techniques also differ sig-
nificantly. For example, the faults injected by clock glitching
may be global and random, while the faults injected by laser
may be local and deterministic. Therefore, a comprehensive
modeling of the existing fault-injection techniques is necessary
to enable fast, reliable, and accurate assessment of the fault-
injection vulnerability. Without such models, it is difficult
to evaluate how these faults injected by different techniques
would impact the circuit and security properties.

A fault model is a set of attributes characterized from the
physical impact of the faults injected by a specific technique.
It converts a physical event of fault-injection into a logical
model. Using the logical model, we can simulate the fault
injection and propagation in the digital circuit and analyze the
impact of the faults for different fault injection techniques.
Different fault-injection techniques differ greatly in their abil-
ity to control the location and time (spatial and temporal) of
the injected faults, in the number of bits affected, etc. The
list below shows fundamental attributes for our proposed fault
model characterization.

• Fault category: Faults can be classified into two ma-
jor categories: (i) global faults where they are injected
globally across the whole design, such as clock faults or
voltage faults, and (ii) local faults where they are injected
locally in a small portion of the design, such as laser or
FIB.

• Fault-injection location: Complete control spatially
means a single specific cell in a design can be affected,
e.g., using a high-resolution laser. Some control means a
specific group of cells or a region can be targeted, but
the sub-location within the specific group or region is
unknown, e.g., faults can only be injected into sequen-
tial cells using the clock-based fault-injection technique.

TABLE I: Our proposed fault model characterization.

Technique Fault
Category

Spatial
Control

Temporal
Control Fault

Type
Fault

DurationNo Some Compl No Some Compl
Clock

Glitching Global X X X X Bit-flip Transient

Voltage
Glitching Global X X X X Bit-flip Transient

EM Global X X X X Bit-flip Transient
Laser Local X X X X Bit-flip Transient

FIB Local X X X
Bit-flip
Stuck-at

Transient
Permanent

No control represents the faults that would be injected
randomly among all cells in the design.

• Fault-injection time: Complete control temporally indi-
cates that the faults can be fully synchronized with the
design or operation and can be injected at a specific point
of time. Some control means a set of operations or clock
cycles can be targeted, but not a specific one. No control
represents faults that can only be injected at a random
time.

• Fault type: Faults can have different effects on the chip:
stuck-at fault, bit-flip fault, set/reset fault, destructive
fault (permanent damage), etc.

• Fault duration: Faults can have different duration: tran-
sient and permanent.

In addition, the specification (i.e., high or low resolution)
of the fault-injection technique and the targeted technology
node of the design could also impact the fault model. For
example, a high-resolution laser can inject a single bit fault at
any cell in a design with large feature size (complete control
on fault location). However, a low-resolution laser may impact
tens/hundreds of cells at a time and inject a fault with multiple-
bit flips in a design with small feature size (some control on
fault location).

Table I shows the characterized fault model for different
fault-injection techniques. Clock glitching, voltage glitching,
and EM are classified as global fault-injection techniques,
while laser and FIB are classified as local fault-injection
techniques. Generally, local fault-injection techniques are more
controllable in fault location and time. For fault type and
duration, all fault-injection techniques evaluated in the table
can be modeled as bit-flip and transient, respectively.

C. Fault List Generation

A detailed fault list is required for the fault simulation. The
fault list is generated based on the security property and fault
model. Each fault contains four attributes: fault injection time,
fault location, fault type, and fault duration. For most fault-
injection techniques, the fault type can be modeled as bit-flip
and the fault duration can be modeled as transient for one
clock cycle as shown in Table I. The following content of the
section illustrates how the fault injection time and location are
determined.

For the fault-injection time, we assume the strongest at-
tacker who has complete control on the clock cycle at which
the fault would be injected (note that in practical scenarios,
this assumption may not always hold true; therefore, the attack
success is actually lower), which means the attacker is able to

6
Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 12:47:58 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3063998, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

inject fault at any specific clock cycle. The exact fault injection
time is at any clock cycle within the attack window. The attack
window usually starts with raising a control signal, like start,
load, etc., that launches a new round of operation in the design.
The attack window would close when the security property is
checked. Taking the SP1 mentioned at the end of Section III-A
as an example, the attack window starts when the ld signal is
raised (clock cycle: 24) to start the AES and the attack window
is closed in the first AES round (clock cycle: 27) at which the
security property is checked as shown in Fig. 4(b). Therefore,
if only one-time attack is considered in which the faults are
injected only once, the fault-injection time falls in any one of
the clock cycles from 24 to 27 for SP1. So, the time option
for fault-injection (Tf ) is 4, meaning there are opportunities
in 4 clock cycles to inject a fault.

For the fault location, first, the fault are generally injected
in the fan-in cells of the signal where the security property is
checked. Second, it depends on the fault category: global or
local. For the fault-injection techniques that result in global
faults, such as clock glitching or voltage glitching, in order to
reduce the simulation workload, the potential fault-injection
locations can be modeled only at sequential cells because only
the latched faults at sequential cells are impacted, and their
contents are propagated in the design. This is similar to single
event upset (SEU) faults, but multiple events are also consid-
ered in this work. For the fault-injection techniques that result
in local faults, such as FIB or laser, the potential fault-injection
locations can be any cells (sequential and combinational cells)
in the design, which is similar to the union of single event
upset faults and single event transient faults (SEU+SET), but
multiple fault locations are also considered in this work.

Practically, the actual concurrent fault locations in an attack
can be any combination of cells in the potential injection loca-
tions. However, if the design size is large, it is not necessary to
simulate all possible combinations of fault locations because
the possibility of implementing a specific fault combination
decreases exponentially with the increase in concurrent fault
locations. For example, the possibility of injecting a fault at
only one specific cell among 1000 cells might be 1 × 10−3

(1/
(
1000
1

)
). However, the possibility to inject concurrent faults

at 20 specific cells among 1000 cells is 3× 10−42 (1/
(
1000
20

)
)

which is exponentially lower than the possibility to guess the
key value of a 128-AES module at once (1/2128 = 3×10−39).
Further, for some fault-injection techniques, like laser, the
number of concurrent fault locations is also limited by the
number of laser beams (typically, it is only one). Therefore, a
small threshold can be set for the number of concurrent fault
locations considered in the fault simulation. This threshold can
vary depending on the fault-injection technique’s specification,
simulation capability, and the benchmark size. In practice, this
threshold can be set to 1 or 2.

For example in SP1, first, the fan-in circuit of this security
property, i.e., the fan-in circuit of the done signal, is extracted
as shown in Fig. 4(a). The RTL of the AES module is from
OpenCores [42] and the gate level netlist is synthesized using
Synopsys Design Compiler with SAED32nm library. Table II
shows the general information of the extracted fan-in circuit.
It is a small logic, part of AES control logic. There are only

TABLE II: Fan-in circuit information of SP1.

Inputs Outputs Nets Sequential
Cells (NS)

Combinational
Cells (NC )

Total
Cells (NT )

3 1 36 5 26 31

three primary inputs associated with SP1: clk (clock), ld (key
load), and rst (reset). The only output is the done signal which
is the checkpoint of the security property. By checking when
the done signal is raised, one would know whether the security
property is violated.

For a global fault-injection technique assessment, the poten-
tial fault-injection locations are modeled only at the output of
sequential cells to minimize the fault simulation workload. As
shown in Table II, the number of sequential cells (NS) in this
fan-in circuit is 5. Since it’s a small number of sequential cells,
all possible combinations of these 5 locations are considered
as fault-injection locations in the fault list. So, the concurrent
fault threshold (CFth) is set to 5. If the potential fault-injection
locations are large, only 1 or 2 concurrent fault locations
are considered in this work as discussed earlier. Hence, the
total number of faults for global fault-injection technique
assessment (TFg) in the fault list is:

TFg = Tf ×
CFth∑
i=1

(
NS

i

)
=

4×
[(

5
1

)
+

(
5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)]
= 124 (1)

where Tf is showing the number of clock cycle options (24-
27) for fault-injection. For the local fault-injection technique
assessment, the potential fault-injection locations are the out-
put of all cells in the circuit. As shown in Table II, the number
of total cells (NT ) is 31 in total. As illustrated before, it is
not necessary to consider all possible combinations of the
potential fault-injection locations. Here, up to 4 concurrent
fault locations (CFth = 4) are considered in this fault list and
the total number of faults for local fault-injection technique
assessment (TFl) is:

TFl = Tf ×
CFth∑
i=1

(
NT

i

)
=

4×
[(

31
1

)
+

(
31
2

)
+

(
31
3

)
+

(
31
4

)]
= 145, 824 (2)

D. Fault Simulation

After generating the fault list, faults need to be simulated to
check their effects. In our framework, the fault simulation is
performed using Z01X from Synopsys [43], which is a fast and
comprehensive functional fault simulator. By injecting faults in
the design, the attacker can achieve privileges to leak/tamper
asset information. Hence, the critical locations of the design
to fault-injection attacks should be identified to avoid security
property violation. Protection of these critical locations with
high priority ensures that the assets cannot be leaked/tampered
and the security properties cannot be violated by fault-injection
attacks.
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In a fault-injection attack, the faults might be injected
directly at locations where a property is checked (e.g., done
signal in SP1) or in their fan-in circuit (e.g., Fig. 4(a)), if it is
easier. Therefore, during fault simulation, we inject faults at
both locations based on the fault model characterized from the
targeted fault-injection technique and the corresponding fault
list, considering the security property as illustrated in Sections
III-B and III-C. If the injected faults violate the security
property, the fault simulation would capture this violation and
mark the corresponding faults. The critical locations can be
extracted from those faults. These critical locations should
be properly protected using countermeasures against fault-
injection attacks.

Different security properties may involve different portions
of the design, which means the property can only be violated
if the faults are injected or reach to the specific portion of
the design. In most cases, this portion would be the fan-in
circuit of the location referred in the security property. For
example, in the case of SP1, the security property can be
violated only if the faults are injected in the fan-in circuit of
the done signal. Therefore, to increase the efficiency of fault
simulation, the fan-in circuit of the security property would
be extracted and the fault simulation would be performed on
the extracted circuit only.

Besides the fault and the design implementation, violation
of a security property also depends on the stimulus vector.
With the same fault in a design, some stimulus can success-
fully violate the security property, but some others cannot
because the toggling activities of internal signals vary from
different stimulus. Therefore, by feeding different stimulus to
the simulation with the same fault, the rate of the security
property violation for the targeted fault can be calculated.
Faults with zero security property violation rate can be defined
as non-effective faults. Faults with non-zero security property
violation rate can be defined as effective faults. Table III
summarizes the terms used in this paper and their definitions.
More terms will be illustrated in the following sections.

If the extracted fan-in circuit of the security property is a
part of the control logic (e.g., FSM), specific input patterns
that are commonly used for the functionality of the control
logic can be utilized as the stimulus in the fault simulation.
For example, in SP1, since one input is the clock and the
other two inputs are control signals, these signals are switching
with a fixed pattern instead of random transitions. Therefore,
only one specific pattern is applied as the input stimulus to
the extracted fan-in circuit of SP1 as shown in Fig. 4(b).
If the extracted circuit is part of an arithmetical logic, e.g.,
arithmetic-logic unit (ALU), random input vectors could be
used as the stimulus.

Once the security property, fault list, stimulus, and the se-
curity property fan-in circuit are available, the fault simulation
can be performed.

E. Critical Location Identification

When the fault simulation is done, we would know whether
a fault in the fault list is effective at violating the target security
property. One fault can consist of one or more fault locations.

TABLE III: Terminologies used in the paper and their defini-
tions.

Terms Definitions
Non-

effective
faults

The faults with zero security
property violation rate

Effective
faults

The faults with non-zero security
property violation rate

Critical
faults

A subset of effect faults in which all fault locations
are necessary to the security property violation

Feasible
faults

A subset of critical faults that can be implemented
by a setup-time based fault-injection technique

Critical
locations

A set of locations that has overlap with every critical
or feasible fault and the set size is minimized

As an example shown in Fig. 5, its fault list is shown in Table
IV. As we can see, faults #1-3 only have one fault location,
while faults #4-6 have two fault locations and fault #7 has
three fault locations. If an effective fault consists of two or
more fault locations, not every fault location is necessarily
contributing to the security property violation. In other words,
injecting faults at a subset of the fault locations of an effective
fault may still violate the security property. Therefore, faults
with all fault locations contributing to the security property
violation are defined as critical faults. For the example shown
in Fig. 5, we consider that the following security property: the
output of cell C should not be 0. Also, assume that faults can
be injected at any combination of the output of cells A, B, and
C. Table IV shows the fault list and the identified critical faults
in this case. Three possible fault locations (cell output: A, B,
and C) result in 7 different faults considering all combinations
of the three fault locations (

∑3
i=1

(
3
i

)
). Except for faults #1 and

#2, all other faults can effectively violate the security property.
However, one can see that some fault locations are not critical
to the property violation. For example, a single location fault at
cell C (fault #3) alone can violate the security property. It is the
critical contributor to the violation, so this fault is identified as
a critical fault. Any other fault that contains the fault location
at cell C (e.g., fault #5-#7) can violate the security property
because of the existence of the fault at cell C, instead of the
faults at other fault locations. They are effective faults but not
critical faults. Another critical fault identified in this case is
the fault at location A+B (fault #4: concurrent fault at A and
B). Although there are 5 effective faults in this example, only
2 can be identified as critical faults.

Taking into consideration that every location in a critical
fault is vital to the violation of the security property, if the
fault cannot be injected at one of the locations in a critical fault
(e.g., location A of fault #4 in Table IV), the corresponding

Fig. 5: Critical fault identification.
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security property will never be compromised by the attacker.
Therefore, for all critical faults, if at least one fault location is
properly protected, all critical faults cannot be implemented.
Hence, the critical location is defined as a set of locations that
covers all critical faults and the set size is minimized.

Table V shows one example of critical locations identified
from critical faults. In this example, there are 4 critical
faults with different fault locations that every fault location
is contributing to the security property violation. Without
the critical location identification, all 7 fault locations (H-N)
should be protected against fault-injection attacks. However,
location H can be identified as critical location with the
set size being only one. Therefore, by only protecting this
one critical location, all the 4 critical faults would never be
enabled. In addition, another location set {I,J,K,M} covers all
critical faults as well. However, the set size is 4 which is not
the minimal size. Hence, this location set is not the critical
location.

F. Fault Feasibility Analysis

In the fault simulation, each fault can be injected precisely at
the desired location and time. However, in practice, even with
the fault model characterization, not every fault in the fault
list can be executed corresponding to its model on physical
devices by the specific fault-injection technique since different
techniques may have different requirements and limitations
on where and when the fault can be injected. Therefore, we
perform the fault feasibility analysis for specific fault-injection
techniques, so that the critical faults and critical locations
identified from Section III-E make sense in a practical attack.

This step is optional in the SoFI framework because of two
reasons. First, the fault-injection techniques are always evolv-
ing where some infeasible faults/attacks today may become
possible in the near future. Hence, it is desirable to always
protect critical locations against all critical faults as long as the
protection overhead is acceptable. Additionally, our current as-
sessment is performed at the gate-level design phase. It might
be difficult to evaluate the feasibility of some fault-injection
techniques at the gate-level before the following design phases
(e.g., physical design). For example, the feasibility of a fault

TABLE IV: Fault list and critical faults.

Fault
Index (#)

Location
(Cell output)

Effective
Fault

Critical
Fault

1 A No No
2 B No No
3 C Yes Yes
4 A+B Yes Yes
5 A+C Yes No
6 B+C Yes No
7 A+B+C Yes No

TABLE V: Example critical location identification.

Critical Fault
Index (#)

Location
(Cell output)

Critical
Location

8 H+I

H9 H+J
10 H+K+L
11 H+M+N

using laser-based fault-injection technique is mainly dependent
on the layout information of the design, which is unknown at
the gate level design stage. Hence, for some fault-injection
techniques, such as laser, the fault feasibility analysis cannot
be performed for the specific critical faults. However, some
design suggestions can be made for later design phases (e.g.,
physical design) to make the critical faults infeasible.

1) Feasibility Analysis of Setup-time Based Fault-Injection
Techniques: Many fault-injection techniques, such as clock
glitching or voltage depletion, are leveraging the setup-time
violation of flip-flops to inject faults. Clock glitching reduces
the clock period and the voltage depletion extends the path
delay so that the setup time constraint of the flip-flops can be
violated in both scenarios. However, the setup time violation
cannot guarantee a bit-flip fault to be injected into the design.
Essentially, when the setup time is violated, the flip-flop will
latch the value of the previous clock cycle. If the value of the
current clock cycle in normal operation is consistent with the
previous cycle, the flip-flop will still latch the correct value
even if the setup time is violated. Therefore, the bit-flip fault
can only be injected in flip-flops when a state transition is
expected in normal operation.

Considering the circuit in Fig. 1(b) and assuming the
combinational logic is only delay buffers, the correct value
of flip-flop A and B in normal operation is shown in columns
2 and 3 of Table VI. There is only one transition for flip-flop
A at cycle T and it is propagated to flip-flop B in the next
cycle (T+1). Column 4 of this table shows the latched value
in flip-flop B if its setup time is violated in the corresponding
clock cycle. We can see that only the value at cycle T+1 is
different from the correct value in column 3, so that fault can
only be injected at cycle T+1. In other cycles, even though the
setup time of flip-flop B is violated, it can still latch the correct
value because there is no transition at that cycle. Therefore, for
flip-flop B in this example, fault at cycle T+1 is a feasible fault
and faults at other cycles are infeasible because they cannot be
practically implemented by the setup-time based fault-injection
technique. SoFI can automatically find such feasible faults by
going through the gate-level simulation traces.

After the fault-injection vulnerability assessment is done,
local countermeasures can be developed to protect the identi-
fied critical locations. This will ensure all security properties
evaluated in the assessment would never be violated, and
also the protection overhead would be significantly reduced
because critical locations should be a very small portion of
the design. In addition, because our SoFI is performed at early
stage of the IC design flow, the design might be altered to
address these vulnerabilities by using different FSM encoding,
applying different timing constraints, etc.

2) Design Suggestions against Local Fault-injection Tech-
niques: For those local fault-injection techniques, such as

TABLE VI: The latched value of flip-flops in Fig. 1(b).

Clock Cycle Q A Q B Q B’
0∼T-1 0 0 0

T 1 0 0
T+1 1 1 0

T+2∼End 1 1 1
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TABLE VII: International Technology Roadmap for Semicon-
ductors (ITRS) 2013 [44].

Node Pitch Year
16nm 80nm 2013
10nm 64nm 2015
7nm 50nm 2017
5nm 40nm 2019

3.5nm 32nm 2021
2.5nm 26nm 2023
1.8nm 20nm 2025

laser or FIB, the faults feasibility depends on the physical
implementation of the design, such as place and route. One
limitation of these local fault-injection techniques is the num-
ber of laser beams/focused ion beams. Typically, there is only
one laser beam available for fault-injection. Hence, if a critical
fault requires two or more concurrent fault locations, e.g., cell
A and cell B, by placing cell A and cell B with a far enough
distance that larger than the maximum spot size of the laser,
this critical fault would never occur by the laser. Such design
suggestions can be made in our assessment framework, so that
all critical faults with two or more locations would never be
implemented using the laser with only one beam.

Another limitation of these local fault-injection techniques
is the need for the best resolution (minimum spot size) for
advanced technology nodes. Taking laser as an example, the
resolution R is a function of wavelength λ [45]:

R = λ/(2 NA), NA: Numerical Aperture (in air < 1) (3)

Typically, a near infra red light (λ ≈ 1µm) is used for laser
fault-injection from the backside. Hence, R is at best around
500 nm. Table VII shows the technology trend targeted in 2013
[44]. From the table, we can see that for the latest technology
nodes with pitch size <100 nm, tens or even hundreds of
cells would be involved in one laser spot, which means if the
attacker is targeting only one cell, it would be very challenging
to inject fault only at that cell as all the cells around the target
cell within the laser spot would potentially experience injected
faults. Hence, if a critical fault at location A can violate a
security property while a fault at location A+B cannot violate
the security property, by placing cell A and cell B closely
enough to make the faults injected at these two cells at the
same time, the threat from this critical fault can be mitigated.
Further, fan-out cells of cell A can be placed closely around
cell A so the propagation of the fault at cell A may be blocked
by the fault injected at its fan-out cells. By creating such
placement constraints, the critical faults with only one fault
location can be mitigated significantly.

IV. EXPERIMENTAL RESULTS

In this section, the SoFI framework is evaluated on different
benchmarks. Our experiments are designed to show how effi-
cient the assessment flow is and how many critical locations to
fault-injection attacks can be identified in the design. For each
benchmark, its gate-level netlist as well as the corresponding
security properties are considered for the evaluation of SoFI.

All benchmarks used in this work are from OpenCores
[46]. They are described in register-transfer level (RTL) code

TABLE VIII: Fault simulation results for SP1.

Fault
Category

Total
Faults

Effective
Faults

Critical
Faults

Feasible
Faults

Critical
Locations

% in
AES

Global 124 20 3 1 1 0.010%
Local 145,824 9,563 83 NA 6 0.058%

and synthesized using Synopsys Design Compiler with SAED
32nm technology library. The fault simulation is performed
using Synopsys Z01X on Red Hat Linux server 7.8 with Intel
Xeon CPU E5-2640 @ 2.6GHz.

A. Information Leakage Results

As an example across the SoFI framework section, the SP1
definition was given in Section III-A as a security property to
preserve information leakage. To check the resiliency of this
property against fault injection attacks, the AES benchmark
is synthesized with 10290 cells in total; the fan-in circuit of
SP1 is extracted whose information is shown in Table II; the
fault list is generated with 124 global faults and 145,824 local
faults as illustrated in Section III-C; one pattern is applied to
the fault simulation as illustrated in Section III-D and Fig. 4
(b).

Table VIII shows the fault simulation results for SP1. For
the global fault-injection technique assessment, 20 effective
faults that can violate SP1 are achieved directly from the
fault simulation. Among these effective faults, 3 critical faults
that are actually contributing to the security property violation
are identified as shown in Table IX. Only one feasible fault
that can be implemented by setup-time-violation-based fault-
injection technique is identified from the feasibility analysis.
Therefore, only one critical location is identified from the fea-
sible fault, which is 0.01% (1/10290) of the AES module, so
that by protecting this critical location, the feasible fault would
never be able to cause violation. For the local fault-injection
technique assessment, the feasibility analysis is not performed
because the layout information of the design is not available
at the gate-level assessment. 6 critical locations are identified,
which is 0.058% (6/10290) of the AES module. Therefore,
by protecting these 6 critical locations using redundancy for
example, all critical faults would not be enabled using local
fault-injection techniques.

To understand how the identified critical faults can violate
SP1, the 3 critical faults for global fault simulation are
extracted. Table IX shows the time (i.e., clock cycle #) and
location of the 3 critical faults. The 5 sequential cells in the
circuit are done reg and dcnt reg[3:0] whose outputs are done
and dcnt[3:0], respectively. dcnt reg[3:0] is the output of a 4-
bit counter that counts the AES round. The waveform of output
signals of the 5 sequential cells is shown in Fig. 6. When the
ld signal is raised, the counter is set to 11 (b’1011) in the
next cycle. Then, it is counting down from 11 to 0. When the

TABLE IX: Critical faults for global fault simulation.

Critical Fault
Index (#)

Time (clock
cycle #) Location Feasible

Faults
1 27 done No
2 25 dcnt[3]+dcnt[0] Yes
3 26 dcnt[3]+dcnt[1]+dcnt[0] No
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Fig. 6: Waveform of 5 sequential cells for SP1.

counter is 1 (b’0001) the done signal will be raised in the next
clock cycle.

The security property violation requires that the done signal
is raised at clock cycle 27. Therefore, it is easy to understand
if the fault can be injected directly in done at cycle 27, the
security property will be violated, which is the case of fault
#1 in Table IX. In addition, if the counter is set to 2 (b’0010)
at cycle 25, the done signal will be raised two cycles later
(cycle 27). Similarly, if the counter is set to 1 (b’0001) at
cycle 26, the done signal will be raised one cycle later (cycle
27). In both cases, the security property is violated as well and
these two cases are implemented by faults #2 and #3 in Table
IX, respectively. Therefore, the fault simulation results are
correct and consistent with the circuit logic analysis. Further,
only fault #2 is feasible by setup-time-violation-based fault-
injection techniques because there are transitions for dcnt[3]
and dcnt[0] at cycle 25 as shown in Fig. 6.

B. Security Properties in FSMs

Many fault-injection attacks focus on analyzing the fault
effects on data paths. However, finite state machines in the
control path are also vulnerable to fault-injection attacks [47].
The security of an SoC can be compromised if the FSMs
controlling the SoC are tampered by fault-injection attacks.
Hence, the security properties to protect FSMs should be con-
sidered and the FSM’s vulnerability to fault-injection attacks
should be assessed using SoFI. In this subsection, 4 security
properties in the FSM of AES, RSA, and SHA controllers are
evaluated, respectively.

1) FSM in AES Controller: The FSM of AES controller
is composed of five states: 1) Wait Key; 2) Wait Data; 3)
Initial Round; 4) Do Round; and 5) Final Round. During
Wait Key and Wait Data states, the secret key and plaintext

TABLE X: Security property fan-in circuit information.

Benchmark Security
Property Input Output NS NC NT

AES FSM 1 2.1 3 3 7 24 31
AES FSM 2 2.1 3 3 7 20 27
RSA FSM 1 2.2 2 1 7 23 30
RSA FSM 2 2.2 2 1 7 21 28
SHA FSM 2.3.1/2.3.2 20 86 3 64 67
AES KS 3.1/3.2 130 128 140 2167 2307

are loaded into the AES data path, respectively, while during
Initial Round and Do Round states, ten rounds of AES occur.
After ten rounds, the Final Round state is reached and the
result is latched to the output registers. One possible attack can
be implemented against this FSM as follows: if an attacker can
inject a fault and gain access to the Final Round directly from
Initial Round without going through the Do Round state, then
premature results will be stored, which significantly weakens
the encryption strength of the AES algorithm and potentially
leaks the secret key. Therefore, for this FSM, one security
property can be defined as:

SP2.1: In the FSM of AES controller, Initial Round state
cannot directly jump to Final Round state without going
through Do Round state.

2) FSM in RSA Controller: RSA is a widely used asym-
metric encryption algorithm. The FSM of the RSA controller
module consists of seven states: 1) Idle; 2) Init; 3) Load1;
4) Load2; 5) Multiply; 6) Square; and 7) Result. Here, the
attacker’s objective would be to bypass the intermediate rounds
of Square and Multiply states and access the “Result” state to
obtain the premature result of RSA encryption. Therefore, for
this FSM, one security property can be defined as:

SP2.2: In the FSM of RSA controller, Square and Multiply
states cannot be bypassed to Result state.

3) FSM in SHA Controller: The SHA FSM is composed of
7 states: 1) Reset; 2) Data Input; 3) Padding; 4) Block Process;
5) Block Next; 6) Valid; and 7) Error. Each of these states
controls specific operations in the SHA-256 digest engine. If
an attacker can successfully inject a fault in the FSM to get
access to specific states without going through the valid state
transitions, it can compromise the security of the SHA-256
digest engine and make it vulnerable to hash collision and
preimage attack [48]. Therefore, two security properties can
be defined as:

SP2.3.1: In the FSM of SHA controller, each time when a
block is loaded, the Data Input state should not be bypassed.

SP2.3.2: In the FSM of SHA controller, when the last block
is loaded, the Block Process and/or Block Next state should
not be bypassed.

Table X shows the information of the extracted fan-in
circuit benchmark for different security properties. The AES
benchmark used for SP2.1 differs from the one used for SP1.
The only difference between AES FSM 1 and AES FSM 2 is
from the different FSM encodings; same for RSA FSM 1 and
RSA FSM 2.

Table XI shows the results of the fault simulation. As we
can see, in the global fault simulation of AES FSM 1, there
are no feasible faults, which indicates the FSM is resistant
against setup-time violation-based fault-injection techniques.
However, for AES FSM 2, there is 1 feasible fault. Similar
results are achieved for the global fault simulation of RSA
FSM 1 and RSA FSM 2 in which there is 0 and 1 feasible fault,
respectively. Hence, inappropriate FSM encoding scheme can
bring additional vulnerability to the design against fault-
injection attacks. For the local fault simulation of both AES
FSM 1 and AES FSM 2, 7 critical locations are identified,
which indicates, by protecting these 7 critical locations in the
AES, the security property would never be violated and the
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threat from fault-injection attacks is significantly mitigated.
For the local fault simulation of RSA FSM 1 and RSA FSM
2, there are 8 and 7 critical locations identified, respectively.
For SP2.3.1 or SP2.3.2 in SHA FSM, there are 1 and 25
critical locations identified for global and local fault simu-
lation, respectively. Therefore, for these four SPs in FSMs,
less than 0.6% of the cells in AES/RSA/SHA are critical to
fault-injection attacks. By protecting these critical locations,
the threat from fault-injection attacks can be significantly
mitigated and the protection efficiency could be much higher
than conventional approaches in which the whole FSM or the
whole AES/RSA/SHA is protected.

C. Security Properties against DFA

Differential fault analysis (DFA) is one of the most well
known fault-injection attacks to compromise the secret key
of cryptography devices [1]. By injecting faults at a specific
location and time during the encryption and comparing the
faulty and correct ciphertext, clues of the secret key can be
deduced. Hence, the key space can be significantly reduced to
make brute force attack practical. Different DFA attacks may
require different faults in terms of size, location, and time. If
the required faults for DFA can never be satisfied, the attack
would not succeed.

In this subsection, the threat from three highly cited DFA
attacks [49]–[51] on the key schedule (KS) of AES are
evaluated. The corresponding security properties are defined
to protect the design against these DFA attacks.

SP3.1: At the 9th round of AES, any 1-3 bytes of the first
word in the round key cannot be faulty and the faulty bytes
cannot propagate to the following words in the same round.

SP3.2: At the 9th round of AES, 4 bytes of any word in
the round key cannot be faulty and the faulty bytes cannot
propagate to the following words in the same round.

The AES benchmark used in this experiment is the same one
used in SP1. The information of the extracted key schedule
module in the AES is shown in Table X. 100 random key

input vectors are applied as stimulus in the fault simulation.
Considering the AES key schedule benchmark is much larger
than the AES FSM and more stimulus are applied, only 1
concurrent fault location is considered in the fault simulation.
Hence, the number of critical faults would be equal to the
number of effective faults and the number of critical locations
would be equal to the number of critical faults or feasible
faults, if available.

The fault simulation results are shown in Table XI. As we
can see, there are many more critical locations for SP3.1 than
SP3.2, especially for the local faults assessment. It is because a
single transient fault injected at any fan-in cell of the first word
registers is very likely to result in 1-3 bytes fault in the first
word of the round key, which is violating SP3.1. In addition,
the total number of fan-in cells of the first word registers is
∼1,830. Therefore, it is easy to understand why there are 1,783
critical locations identified in the local faults assessment for
SP3.1. Compared to SP3.1, the critical locations identified
for SP3.2 are much fewer: 0 and 1 for global and local
faults assessment, respectively. It is because SP3.2 requires
all 4 bytes in a word to be faulty, which is difficult to be
implemented by a fault with only one fault location. If a
fault with multiple fault locations is injected, there might be
more critical locations identified. However, the possibility to
inject such fault at specific locations to violate SP3.2 might
be much smaller than implementing a single location fault.
Therefore, SP3.1 is more vulnerable to fault-injection attack,
which indicates the DFA attack targeting a fewer bytes in the
round key is more dangerous and requires more resources to
defend. Except the local faults assessment for SP3.1, there
are less than 0.1% of the cells in AES identified as critical
locations to fault-injection attacks.

The last column shows the CPU run time of different fault
simulations. As we can see, the CPU time is dependent to
many factors, such as the benchmark size, the number of
stimulus, the fault category, and the number of total faults.
Generally, the larger benchmark, the more stimulus, and the

TABLE XI: Fault simulation results.

Benchmark Security
Property Stimulus Fault

Category
# of Concurrent
Fault Locations

Total
Faults

Effective
Faults

Critical
Faults

Feasible
Faults

Critical
Locations

% in AES/
RSA/SHA

CPU Run
Time (s)

AES FSM 1 2.1 1 Global 1-7 508 19 4 0 0 0.00% 1
Local 1-4 145,824 7,173 113 NA 7 0.07% 82

AES FSM 2 2.1 1 Global 1-7 508 18 3 1 1 0.01% 1
Local 1-4 83,412 6,516 63 NA 7 0.07% 44

RSA FSM 1 2.2 1 Global 1-7 381 18 3 0 0 0.00% 1
Local 1-4 95,790 8,533 13 NA 8 0.01% 141

RSA FSM 2 2.2 1 Global 1-7 381 21 3 1 1 0.002% 1
Local 1-4 72,471 5,104 14 NA 7 0.01% 137

SHA FSM 2.3.1 1 Global 1-3 42 2 2 0 0 0.00% 1
Local 1-3 301,098 2,491 160 NA 12 0.28% 401

SHA FSM 2.3.2 1 Global 1-3 42 2 2 1 1 0.02% 1
Local 1-3 301,098 17,508 85 NA 24 0.55% 411

SHA FSM 2.3.1 or
2.3.2 1 Global 1-3 84 4 4 1 1 0.02% 1

Local 1-3 602,196 19,999 245 NA 25 0.58% 801

AES KS 3.1 100 Global 1 420 12 12 6 6 0.06% 432
Local 1 6,921 1,783 1,783 NA 1,783 17.33% 5,855

AES KS 3.2 100 Global 1 420 0 0 0 0 0.00% 414
Local 1 6,921 1 1 NA 1 0.01% 4,993
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more faults require longer run time to execute the fault
simulation.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, for the first time to our knowledge, we bridge
the gap between the need for automated security assessment
tools against fault injection attacks and the capability of
existing computer-aided design (CAD) tools commonly uti-
lized by chip designers. We develop an automated framework
for fault-injection vulnerability assessment at gate-level while
targeting security properties using novel models and metrics.
The fault models are characterized from specific fault-injection
techniques and the fault simulation is performed with security
properties taken into consideration so that the critical locations
to fault-injection attacks are identified. Our experimental re-
sults from AES, RSA, and SHA show that for most security
properties considered in the paper, by protecting less than 0.6%
critical locations in the design, the threat from fault-injection
attacks can be significantly mitigated.

In the future, we plan to expand the SoFI framework to
the RTL level as well as the physical level and apply SoFI
to larger SoC benchmarks with more security properties. In
addition, local countermeasures, such as hardware, time, or
information redundancy-based techniques, will be developed
to protect the identified critical locations more efficiently with
lower overhead. Further, the identification and mapping of
security properties to gate-level netlist will be automated as
much as possible with less manual work.
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