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Abstract— Electronics supply chain vulnerabilities have broad-
ened in scope over the past two decades. With nearly all
integrated circuit (IC) design companies relinquishing their
fabrication, packaging, and test facilities, they are forced to
rely upon companies from around the world to produce their
ICs. This dependence leaves the electronics supply chain open
to counterfeiting activities. In this article, we propose an
electromagnetic (EM)-based fingerprinting framework, called
EMFORCED, to detect remarked and cloned counterfeit ICs.
Here, we demonstrate the benefits of using naturally occurring
EM side channels to identify the IC design layout without
decapsulating the chip under test. Enabling only the clock, Vdd,
and ground pins allows us to generate a design-specific fingerprint
that is dependent upon the physical parameters of the chip under
test. EMFORCED leverages the EM emissions from the clock
distribution network to create a holistic, design-level, fingerprint,
including both temporal information and spatial information.
We utilize the fingerprint information of functionally similar
8051-series microprocessors from three vendors and perform
unsupervised (principal component analysis) and supervised
(linear discriminant analysis) machine learning methods on all
ICs to determine their intravendor and intervendor similarities.
We acquired ICs from multiple dates and lot codes along with
variants acquired from the gray market and analyzed them
for authenticity using physical inspection and X-ray tomogra-
phy. Statistical analysis and machine learning techniques are
used to demonstrate the reference-free and reference-inclusive
classification methods based on EMFORCED measurements.
We demonstrate the classification accuracies of 99.46% and 100%
for unsupervised and supervised approaches, respectively.

Index Terms— Counterfeit detection, electromagnetics (EMs),
machine learning, side channels, supply chain security.

I. INTRODUCTION

ELECTRONICS are commonly deployed in critical sys-
tems; as such, the need to confirm their authenticity is

crucial. Their inclusion in everything from automobiles and
airplanes to nation-wide utilities and advanced weapon sys-
tems demands reliable and authentic integrated circuits (ICs).
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As most design houses have outsourced their semiconductor
manufacturing to offshore companies, the supply chain can
currently be compromised at several points of vulnerability [1].
Electronics counterfeiting has become a multibillion dollar
industry as the supply chain has become more convoluted [2].
Detecting these counterfeits is a challenging problem as non-
destructively verifying all ICs in a system is a daunting task.

Traditionally, companies have used physical inspection,
observing features such as package markings, surface textures,
material composition, pin corrosion, and shape to determine
the authenticity of a given IC [3]–[5]. These techniques are
effective at identifying cosmetic defects although they all share
a fundamental limitation, that is, physical inspection tech-
niques do not rely upon the underlying electronic properties of
the device under test (DUT). The critical component to verify
is the silicon die within the package; hence, assuming the
functionality and authenticity of a die based upon the exterior
of its packaging may lead to misclassifications. Observing the
package of a DUT may provide details of the care taken
in packaging and distributing the IC and potentially catch
recycled ICs. However, experienced counterfeiters can remark
and refurbish an IC to evade detection from physical inspection
techniques and sell the IC as new or an entirely different
part [2]. Extracting physical parameters from the die itself
provides nonrefutable evidence of a device’s defining char-
acteristics. Additionally, physical inspection is a traditionally
manual process, which requires an experienced workforce,
expensive instrumentation, and a golden model to compare
against, corresponding to a high-cost solution susceptible to
IC misclassification.

The taxonomy of electronic counterfeits categorizes the
types of counterfeits into recycled, remarked, overproduced,
out-of-spec, cloned, forged documentation, and tampered [4].
Here, we focus on remarked and cloned ICs. Remarked
ICs are comprised of new or recycled chips that have their
markings modified to falsely present themselves as a different
IC. Cloned chips are copies of an existing IC design and are
widely used by counterfeiters to reduce the development cost
of a component [4]. It is important to distinguish between
cloned and overproduced ICs. While both ICs are dependent
upon the same IC design, overproduced ICs will be physically
and functionally identical to the authentic chip as they
originate from the same foundry, while cloned ICs may not
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necessarily be physically identical but share the same
function since they may be fabricated in separate foundries.
Ideally, integrating a fingerprint into a device, which
could provide a trusted digital ID, would provide
confidence to distributors, system integrators, and end
users. Electronic chip ID (ECID) [6] and physical unclonable
functions (PUFs) [7], [8] are the most common methods of
providing unique identification to modern ICs. ECID values
are not inherently tied to the physical properties of the
silicon die and are not available on many legacy components.
Additionally, PUFs incur additional overhead, are susceptible
to reliability issues, and similarly are not applicable to legacy
components.

Counterfeit detection techniques that rely upon internal
device parameters have previously been proposed [5], [9]–[11].
To confidently classify an IC as authentic, side channels,
such as power, infrared, and electromagnetic (EM) emis-
sion, can be used to extract information that is directly
correlated with the physical properties of the DUT. Power-
based side-channel information is easily obtained from any
IC by monitoring the transient current on the ICs’ ground
pin [12]. Power consumption can provide useful information
about a given IC although it is limited by its single point
of reference and inherently lacks spatial information. Infrared
and photon-based side channels provide both temporal and
spatial side-channel information [13] although they require
extended acquisition times and a direct line of sight to
the silicon die. Certain ICs are distributed with the silicon
exposed although the majority of ICs would require decap-
sulation prior to measurement, inevitably rendering a subset
of DUTs unusable in the process. Finally, EM-based side-
channel techniques provide temporal and spatial information
while remaining completely noninvasive although challenges,
such as environmental noise, spectrum resolution and band-
width, and probe stability, need to be overcome for successful
detection [14].

A. Contribution

In this article, we propose EMFORCED, an EM fingerprint-
ing framework for remarked and cloned counterfeit IC detec-
tion. EMFORCED leverages EM side-channel information as
a design-specific fingerprint to determine the authenticity of
a given DUT. Its unique features can be summarized in the
following key points.

1) EMFORCED enables nonintrusive, fast, and accurate
counterfeit detection allowing all ICs to be authenti-
cated. In contrast to invasive or otherwise damaging
techniques, EMFORCED will not assume that all ICs
within a larger group are the same as a single IC.

2) The generated fingerprints are independent of circuit
functionality, thus requiring no knowledge of the DUT.

3) EMFORCED can be applied to any IC with a clock and
does not require any prior modification to the circuit or
its original programming.

4) EM fingerprint measurements enable both rotational and
spatial analyses of a given DUT.

5) Finally, EMFORCED uses a low-cost experimental setup
that can be used at any time in the IC life cycle after
packaging.

Our main contributions are summarized as follows.

1) We propose a novel noninvasive EM-based framework
for counterfeit IC detection that extracts information
from the physical die characteristics to generate a
design-specific signature.

2) We utilize two different measurement environments,
discussing the potential ubiquity of the approach.

3) We demonstrate high-confidence device classification
on more than 60 ICs from three vendors using both
unsupervised and supervised machine learning methods
to encompass multiple utilization scenarios.

4) We provide a resilience analysis of our proposed frame-
work, discussing the theoretical difficulty of cloning a
device signature.

The remainder of this article is organized as fol-
lows. Relevant background information regarding counterfeit
detection using EM emissions is provided in Section II.
The EMFORCED framework is detailed in Section III.
An overview of our experiments and results is provided in
Section IV, where we also explore the utilization of multiple
variables for increased classification confidence. We provide a
resilience analysis of our classification methods in Section VI.
Finally, we conclude this article in Section VII.

II. PRELIMINARY

A. Near-Field EM Emissions

EM signals are prominent in our everyday lives. This mostly
invisible radiation is utilized in applications ranging from
microwave cooking to cellular communications. EM waves
radiate from any conductor containing a moving current, mak-
ing nearly every object emit its own EM field. Notably, modern
ICs are constructed on billions of current-carrying metal lines.
Positioned above the active region of the device, these lines act
as antennas that propagate EM waves from numerous sources
within the IC. Defined by its close measurement proximity,
near-field radiative effects can be observed at distances r
less than r = 0.1 ∗ λ/(2 ∗ π), where λ is the wavelength
of the desired measurement signal [15]. Within our EM
measurement environment (see Section IV for details) with an
observation distance of 1 mm, near-field measurements apply
for frequencies below 10 GHz (λ < 3 cm), which corresponds
to our desired spectrum. Measured near-field emanations can
be directly correlated with the activity of the IC itself, mapping
core functionality and localized power consumption to a
measurable physical characteristic [16]. As each metal line
corresponds to a unique EM emission source, the layout of
a given design determines the emission profile emanating
from a given DUT. The two comprehensive metal structures
within any digital or mixed-signal IC are the power and the
clock distribution networks making them primary candidates
for a design-based EM fingerprint. Here, we fluctuate the
clock input signal to generate EM fingerprints from the clock
distribution network. This was selected to maintain operating
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characteristics of the ICs while propagating repeating oscilla-
tions throughout the complex clock distribution network.

B. Counterfeit Detection

Counterfeit IC detection techniques have been developed
for over a decade. However, the expansive taxonomy of known
counterfeit types presents numerous obstacles to overcome [4].
Modern counterfeit detection solutions are categorized by:
1) use of design-for-anticounterfeit (DfAC) technologies;
2) physical inspection; and 3) electrical parameter testing using
functional test, structural test, or side-channel measurement.
Among them, DfAC methodologies can be used exclusively
on new IC designs, as they require modifications to presilicon
designs. Alternatively, physical inspection can be performed
on all ICs (new and legacy), but it is traditionally a manual
process, making it expensive and time consuming [4]. Func-
tional and structural (scan-based) testing are also expensive
techniques as they require a costly tester and proper test pattern
development, which require sophisticated knowledge of the
device [17]. Solutions utilizing side-channel measurements are
the most viable and low-cost methods. Among the various
side channels, EM is the most attractive due to its low cost,
applicability to legacy components, speed/ease of acquisition,
and ability to extract temporal and spatial information corre-
lated with the die’s physical characteristics, with or without
test vectors.

C. Distinguishing Characteristics

To determine whether an IC is a remarked or cloned counter-
feit, we must examine the characteristics of the DUT that can
be directly correlated with the counterfeiting method. Physical
inspection methods dependent upon the external characteristics
of the DUT, such as packaging size, texture, markings, and
pin appearances, often fail to successfully distinguish between
an authentic and a counterfeit part. Examining the physical
properties of a suspect IC provides insights into the design
itself. In the case of EM fingerprint measurements, the billions
of metal traces within the IC’s die can be approximated by an
array of radiating point sources. These points are accumulated
by the EM probe and convolve into the extracted fingerprint.
The sources can be approximated by (1), which expresses
the intensity of EM emissions (E) accumulated over the
entire surface of the IC. The collected EM-based fingerprints
represent a complex summation of the currents propagating
throughout the design. If the die’s area is represented as
a �x, y� grid of point sources, the measured result can be
approximated by the following equation [18]:

E ∝
∫

y

∫
x

�S
4π�r2 dx dy =

∫
y

∫
x

(I�x,y�)2 Z�x,y�
4π(r�x,y�))2 dx dy. (1)

Each of these positions requires a current (I ) and complex
load (Z ) to determine the apparent power (S), in addition to
the observation distance (r ). Differences between the circuit
designs will materialize as differences in the observed finger-
prints. Determining physical differences between the suspect
ICs will expose remarked and cloned counterfeit ICs as their
designs are not physically identical to the authentic ICs.

The use of side-channel signatures to distinguish between
similar circuits can also be found within the domain of
hardware Trojan detection [19]–[22]. These works require
input patterns to be provided to the circuit similar to prior
counterfeit detection work. This requires additional time from
the engineers to develop custom test environments per device
type. However, our method does not require prior knowledge
of the DUT and can directly be translated to new devices that
share the same form factor. Postfabrication Trojan detection
methods, whether using power or EM, require custom test
environments, which would not be convertible to other devices
without new software/firmware development. Additionally,
the techniques utilized in [20] represent similar process-
ing techniques to those proposed here, namely the use of
PCA. However, Trojan detection techniques cannot be directly
transferred to remarked and cloned counterfeit detection. For
example, Muehlberghuber et al. [20] detected a Trojan with
the prior knowledge of having exactly two unique classes
of ICs. In contrast, counterfeit detection techniques, such as
EMFORCED, should not assume that the ICs are bound to
a given number of classes. They should be able to encounter
new types of counterfeits whose responses may vary greatly
and eliminate extraneous fingerprints prior to classification.

D. Threat Model

Remarked and cloned counterfeit ICs pose a substantial
threat to various entities within the electronics supply chain.
Remarked ICs can be introduced by adversaries that manipu-
late package identifiers to present used or alternative compo-
nents as new and higher grade versions of a desired IC. Cloned
ICs are functionally similar or identical ICs although they
deviate from their authentic counterparts in implementation.
In certain applications, die revisions of an IC can be considered
insufficient for direct substitution; as such, we treat these as
cloned ICs as well. To determine the primary entities that
remarked and cloned ICs have infiltrated, we present the
following scenarios.

1) The entity possesses knowledge of the ICs’ hardware
design, such as the GDSII file or fabrication node, and
requires verified ICs (example entities: fabless design
house or government).

2) The entity replaces a legacy component that they pos-
sess, but it does not have a reference signature or design
from a trusted party (example entities: government or
critical system integrator).

3) The entity acquires ICs, which have verified EM ref-
erence signatures available from a trusted party, for
integration into their systems or further distribution, and
is required to verify their authenticity (example entities:
original equipment manufacturer (OEM) or component
retailer).

Determining the authenticity of ICs is a critical part of each
entity’s value proposition and could be scrutinized if they were
identified by an end user. For example, fabless design houses
currently place substantial trust in the foundries which fabri-
cate their designs. Identifying authentic ICs is challenging for
them as their “golden” IC is sourced directly from the foundry.
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Fig. 1. EMFORCED framework overview with scenario-specific elements
labeled in orange.

To verify the design, the design house may reverse engineer
the fabricated IC and compare it with their knowledge of
the technology node or original GDSII file. This process is
very time consuming and destroys the device in the process.
However, if the EM fingerprints of all ICs are extracted prior
to reverse engineering, the remaining ICs can be confidently
categorized depending upon the correlation between their
fingerprints and the verified golden IC. Component retailers
with access to a verified reference signature may verify an
IC’s authenticity easily, as they possess verified fingerprints
that can be directly compared against. Entities that often
replace legacy components, such as government, are able
to extract golden fingerprints from the legacy components
that they are replacing. Once the EM-based fingerprints are
measured, newly acquired suspect devices can be categorized
accordingly.

III. EMFORCED FRAMEWORK

The EMFORCED framework can be applied to a number of
entities. Fig. 1 shows the three different scenarios used to clas-
sify a set of DUTs into authentic and counterfeit groupings.
After acquiring the ICs, device-specific EM fingerprints are
extracted and then processed using machine learning methods.
Finally, after the ICs are separated into groups, single samples
from each group can be analyzed using alternative techniques
(e.g., reverse engineering) to properly identify groups of
authentic and counterfeit ICs.

A. Scenario Identification

In this article, we demonstrate the effectiveness of
EM-based measurements and subsequent fingerprinting for
remarked and cloned counterfeit IC detection. To confi-
dently distinguish between the counterfeit and authentic ICs,
we defined three scenarios in Section II-D. Scenarios 1–3
encompass all available combinations of reference-free and
reference-inclusive classification methods. The scenario cor-
responding to a given entity impacts the process by which

EMFORCED must be executed, as shown in Fig. 1. For
example, scenario 1 requires reference-free classification and
sample-based authenticity analysis, while scenarios 2 and
3 would not.

B. EM Fingerprint Extraction

The EMFORCED framework relies upon near-field EM
traces obtained from ICs operating without test vector applica-
tion or prior knowledge of the IC. To generate a device-specific
fingerprint, the clock distribution network is stimulated by an
input clock signal within the typical device operating range.
The clock network is chosen as it permeates all sections of
the die and naturally supports an oscillating or pulsed signal,
enabling high signal-to-noise EM measurements. EM traces
are generated most applying a recurring pulsed signal present
from a function generator or crystal oscillator. To extract
these traces, each DUT is sequentially placed into a socket
for consistent measurements. In this article, we first evaluate
the validity of our framework on a custom-breadboard setup
and then evaluate the potential of our framework with a
standard 8051-development board. The first case represents
the optimal extraction environment reminiscent of a laboratory
setup, while the second provides a more realistic testing envi-
ronment with commercial-off-the-shelf (COTS) components.
Once situated into the test platform, a near-field EM probe
is centered over the die and lowered until it contacts the
surface of the package. The signal from the near-field probe is
amplified and then sampled to provide a digital representation
of the EM fingerprint. The extracted fingerprints can then be
processed and classified into their respective groups.

C. Suspect Classification Methods

To properly categorize suspect ICs within a specific group,
various techniques can be used to confidently identify similar
fingerprints. Here, we separate the three scenarios detailed in
Section II-D into two groups. Scenario 1 requires additional
postprocessing (e.g., reverse engineering) to determine if an IC
is authentic although can be conducted upon a sampling basis
thereafter. Scenarios 2 and 3 are able to leverage information
from an existing database of known authentic EM finger-
prints or extract their own reference from their golden IC.
Here, we detail our reference-free (scenario 1) and reference-
inclusive (scenarios 2 and 3) classification methods.

1) Reference-Free Classification: Assuming that the entity
does not have access to a reference profile, it is essential
to first separate the parts into similarly performing groups.
To quickly and efficiently separate the collected fingerprints
into their respective groups, unsupervised classification meth-
ods enable grouping regardless of the information an entity
possesses regarding the DUTs. For such, we first use principal
component analysis (PCA) that is a very powerful and popular
technique used for dimensionality reduction as well as feature
extraction [23]. The basis behind PCA is to convert potentially
correlated variables into a set that is linearly uncorrelated
(referred to as principal components). These principal compo-
nents represent the data in a manner which highlights the most
expressive features of each signal by projecting the data in
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orthogonal directions that contain the most variance. The first
principal component represents the projection of the data with
the most variance, the second principal component represents
the second most, and so forth. Furthermore, the number of
distinct principal components in a data set will be defined as
the smaller of the number of observations or original variables.
By determining the principal components that contain the most
variance, one is able to quantify the importance of each dimen-
sion of the data and provide a reasonable characterization
within a reduced dimensional space. In our analysis, PCA
is used to reduce the 250 000 sample-per-fingerprint feature
vector down to a dimensionality of N − 1, where N is the
number of measurements used for training (either 45 or 340 in
our experimentation; see Section IV).

Alternatively, cross-correlation analysis can provide a statis-
tical method for separating the ICs into their relative groups.
Cross correlation determines the similarity between two time-
series signals. This method can provide a simple percentage
of correlation for each comparison and serve as a similarity
metric between the collected fingerprints. In EMFORCED,
cross correlation is used to verify that the fingerprint under
test is a member of one of the groups defined by PCA or
reference profiles.

2) Reference-Inclusive Classification: Assuming that the
entity has access to an authentic IC or a reference profile
provided by a trusted entity, reference-inclusive classifica-
tion can confidently determine the authenticity of the DUT
without any additional postprocessing. To confidently address
all possible scenarios of remarked and cloned IC insertion,
a layered approach must be used. If an entity possesses
a single reference fingerprint or IC, then cross correlation
will be optimal for determining the device’s authenticity.
Acquiring a number of suspect parts to classify may benefit
from either cross correlation or PCA as there is enough
data to extract variance. However, clear fingerprint separation
using PCA does not guarantee that the devices are a part
of different groups. Should all of the fingerprints used for
classification belong to a single device category, PCA may still
separate them regardless of their likeness. Reference-inclusive
classification should prioritize a cross-correlation analysis to
determine whether the collected signatures align well with the
reference before moving on to further techniques.

The reference-inclusive processing technique introduced
here utilizes several established techniques to properly dif-
ferentiate remarked and cloned ICs from authentic ones.
Assuming access to reference profiles from several authentic
device types, a layered approach must be used to ensure proper
classification. For dimensionality reduction, PCA is used on
all genuine reference fingerprints. Note that from this point
forward, all data will be preprocessed through the constructed
PCA projection model. This will project all fingerprint data in
the (N −1)-dimensional space defined by the reference finger-
prints. Once the dimensionality of the data has been reduced,
observing the known good groups and determining to which
group each suspect DUT belongs, similar to our reference-free
approach, will not be solved by simply calculating the distance
from the suspect to the group. This method only works if one
projects all classes through PCA or can definitively state that

all part belongs to 1 of the N existing groups. If the suspect
belongs to group N + 1 and the group is not represented in
the PCA training set; then the suspect could be misclassified.
To address this issue, outlier detection can be utilized. Our
outlier method defines an outlier as three standard deviations
away from the median. When calculating outliers, not all
principal components are equally weighted. For example, our
first three principal components account for ≈96% of the
variance from the projected value. Each principal component
value is individually compared as an outlier 1 or inlier
0 against the corresponding authentic references. This binary
value is then multiplied by the principal component weight to
define the likelihood that a measurement is an outlier. For our
measurements, we empirically determined that a likelihood of
1% provided optimal results for suspect classification. After
performing outlier detection against all known good groups,
the supervised machine learning technique, linear discriminant
analysis (LDA), can be used [24]. LDA utilizes group label
information and feature vectors to form boundaries between
the groups and can classify samples into the most closely
related group. This machine learning classification method
works by maximizing the distance between the mean values
of the class and minimizing the scatter within each class.
Using the linear transformation and dimensionality reduction
of PCA with the nonlinear multiclass classification of LDA
provides increased classification accuracy. LDA can provide
the final classification for suspects that classify as inliers in
two or more groups, as well as verify the classification of
your single-class inliers. True outliers (outliers in all of the
reference groups) should be assumed to be part of a different
M + 1 class. Properly incorporating this layered approach is
critical for proper counterfeit detection. For example, when
assessing a component as a potential counterfeit and do not
have a reference from the counterfeit group available, using
LDA without outlier detection will misclassify all counterfeits
as authentic.

D. Sample-Based Authenticity Analysis

After successfully separating the DUTs into similar groups,
reference-free classification (predominantly used in scenario
1) requires a sample from each group to be analyzed for
authenticity. Depending upon the entity’s available knowledge
of the authentic IC and capabilities, this analysis can take
different forms. The most common due to its relatively reduced
overhead would likely be physical inspection. This process
would include comparing package markings against datasheet
or other publicly available information along with observing
characteristics that may result from the counterfeiting process.
These characteristics include uneven or discolored packaging
surfaces, black-top coating, painted or corroded pins, and
surface material content analysis. For entities that have access
to more valuable equipment, IC decapsulation and potentially
reverse engineering would provide vastly increased confidence
at the expense of time and cost. Once the sample DUTs
have been determined to be either authentic or counterfeit,
the remainder of the DUTs can be confidently classified within
their designation. As EMFORCED relies upon the parameters
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Fig. 2. EMFORCED measurement environments. (a) Breadboard implemen-
tation. (b) Development board implementation.

of the die, sacrificing a single IC allows the remainder of its
group to be properly identified.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

To emulate remarked and cloned ICs, we acquired authentic
chips with the same IP core (8051) from three vendors and
distinguish between them. Within these three vendors, each
variation has at least one set of DUTs (7–10 ICs) acquired
from a “trusted” supplier and one set of DUTs (ten ICs)
from a gray market seller. For our fingerprint classification
experiments, 8051-series microcontroller ICs were selected
from three different vendors: Atmel, Maxim, and NXP. These
ICs were specifically selected because they had very similar
functional characteristics (e.g., instruction set architecture,
operating voltage, and package type). Since we originally
acquired these ICs through a single retailer in one transaction,
all the original devices had the same characteristic markings
and there was no variation in fabrication lots, dates, or packag-
ing location within a given vendor set. As obtaining chips with
various date and lot codes is preferred, we ordered a second
lot of Atmel devices six months after our original order. Addi-
tionally, gray market variants were acquired for each of the
IC types for more realistic suspect classification. All nongray
market DUTs are assumed to contain the same 8051 IP core
and are housed within a 44-PLCC package [25]. Specific
device fabrication facility and technology node information are
not known, as they are not openly provided by the devices’
supporting documentation. Estimation of these parameters is
beyond the scope of this article although we believe that
this information could potentially be recovered from similar
EM-based measurement techniques. When attempting to detect
remarked and cloned ICs, it is important to utilize all the
existing information about the DUT. Various scenarios arise
when attempting to overcome this problem, although they can
be summarized as either reference-free or reference-inclusive.

A. Reference-Free Experimental Overview

Experimental measurements were taken on two different
testing platforms for reference-free classification and only
on the COTS 8051 development board for the reference-
inclusive classification, as shown in Fig. 2(b). Fingerprints
were extracted using a near-field EM probe amplified by
40 dB with wideband amplifiers. The breadboard setup relied

on an external clock signal from a function generator, while
the DUTs tested on the development board are supplied
by a crystal oscillator on the PCB. The probes used in
this experiment were factory-tuned to collect near-field EM
radiation from a single direction and suppress perpendicular
fields [26]. This assists in suppressing noise from external
sources, such as PCB wiring, board-level jumper cables,
and nearby equipment, alleviating the need for additional
EM shielding around the setup. A mixed-signal oscilloscope
was used with a sampling rate of 25 GS/s for all data
acquisition. It should be noted that bandwidth requirement
for proper EM fingerprint acquisition scales proportionally
with the target clock frequency and inversely to the variance
between device types. When comparing ICs with identical
clock frequency, sampling above the Nyquist frequency is
required. This enables transient effects to be extracted and
used for more accurate classification. Given our unshielded,
manually operated test environment, additional variation will
be present in the results. Through experimentation, it appears
as though these nonidealities contribute more variance than
sourcing numerous date and lot codes would. This nonideal
test environment alleviates the need for large, diverse, sample
sets in our classification methods.

1) Breadboard Implementation: To collect EM emissions
from the breadboard implementation, a 5-V peak-to-peak
square wave with 50% duty cycle was applied at the clock
input to enable external observation of transient currents from
forced high-speed transitions. The recurring square wave input
was chosen for this implementation as the low transition delay
enables larger EM emissions. To ensure that the collected
signatures are solely dependent upon the device characteristics,
the voltage, frequency, and pulse shape remained the same.
Altering these parameters will modify the collected signature
and ease the classification of different IC types, although they
should remain constant for a given device type. The clock
stimulus was provided by a dedicated function generator at
16 MHz to comply with the 8051 devices’ typical operation
frequencies. The devices were powered by a 5-V dc input
from a programmable power supply. This was to ensure that
all clock buffers were activated and that the supplied signals
could fully propagate through the circuit. The breadboard test
environment required a total of three connections to the device
(Vdd, ground, and the clock input) and was mirrored within the
development board setup. A Langer EMV RF-K 7-4 near-field
probe was used for fingerprint extraction with the breadboard
implementation. This relatively large (6 mm × 10 mm) probe
provides approximately 5 mm of placement accuracy for
manual probe alignment.

It is important to note that our experimental setup only
requires a clock pulse and does not demand any programs
or specific input vectors to be loaded, which allows for
black-box analysis of COTS components whose functions are
usually not fully known. Furthermore, physical modification
of the die or packaging is not required. EMFORCED could
also prove useful for one-time-programmable (OTP) chips,
on which specific test programs for fingerprinting cannot be
loaded. Additionally, the tests conducted on the DUTs do not
damage the original functionality or reliability of the devices.
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Fig. 3. PCA comparison of 8051 s from three vendors.

This is because the clock signal and power we applied is
within the specified operating range, and the time to collect
and preprocess EM emissions (manually for ten acquisitions
per DUT) was less than 2 min causing no impact compared
to the device lifetime. The EM collection window per acqui-
sition was set as 10 ms, in accordance with the mixed-signal
oscilloscope’s maximum sampling frequency of 25 GS/s and
to observe traces over several clock cycles. It is important to
note that this method is not restricted to the specific equipment
used in this experimentation. However, for optimal results and
scalability, real-world solutions should attempt to limit the
differences between the measurement environments for the
most consistent results.

Our first experiment consisted of collecting 300 EM fin-
gerprints from 30 authentic ICs across Atmel, Maxim, and
NXP. This breadboard setup shown in Fig. 2(a) ensured that
the only signals measured were derived from the DUT’s EM
characteristics resultant from the oscillating clock input. The
setup ensured that the IC was not actively looping to look for
a program to execute, but rather remained inactive. In this
setup, it was unnecessary to use averaging techniques for
noise and anomaly reduction as the intravendor variations were
very small despite different triggering points. The intervendor
differences were quite pronounced, despite testing all DUTs
with an identical, externally supplied, 16-MHz clock. The
physical design differences in the power distribution network
and clock tree accounted for the complex loading effects seen
in the device fingerprints. To ensure our “golden” ICs were
authentic, we processed them using PCA training on 45 of the
300 total fingerprints, randomly selecting traces from three of
the ten DUTs per vendor. The first three principal components
of one probe set are shown in Fig. 3. Fig. 3 clearly shows three
well-defined groups as we should expect from our authentic
IC classification. It is important to note that PCA is not
a clustering algorithm but rather an unsupervised machine
learning method. Therefore, the groups that have formed are
a result of the PCA transformation increasing the variance
between the points and did not require labeled data. A classi-
fication accuracy of 99.46% was determined by averaging the
Euclidean, Minkowski, and City Block distance measurements
for time-domain fingerprints from 100 randomly generated
models [27]. The measurement bandwidth and emission spec-
trum provided by EM measurements typically yield improved

Fig. 4. Visual inspection comparison of authentic and gray market ICs.

results when performing analysis on frequency-domain data
rather than time-domain data. Hence, when transformed to the
frequency domain prior to classification, we observed 99.99%
accuracy from 100 randomly generated models. Thus, we used
frequency-domain data for the remainder of our experiments,
excluding time-series cross correlation.

2) Development Board Implementation: Transitioning to a
more standard environment with which any entity could easily
test an IC, a COTS development board was used for additional
experimentation. By substituting the custom-breadboard solu-
tion for a COTS board, the entire EMFORCED setup could be
easily duplicated using any type of IC. Standard development
boards provide the IC (DUT) with all required pull-up resistors
to boot into an operating state and are readily available to enti-
ties as a standard COTS component. To eliminate variations
from executed instructions and reduce overall noise margins,
50× averaging was utilized for each fingerprint collected. The
development board supplies a clock signal from its crystal
oscillator, requiring only power to be applied externally. The
development board is used alongside all acquired ICs from
both trusted and gray market suppliers from this point forward.
Additionally, a Langer EMV RF-R 3-2 near-field probe was
used for fingerprint extraction with the development board
implementation and multivariate analysis. The probe was cho-
sen to increase sensitivity in multiple directions and decrease
the footprint for increased spatial variation response.

Gray market variations of the authentic ICs were acquired
to create a more realistic scenario for sourcing legacy com-
ponents. To provide a proper baseline for our technique,
the gray market suspects were physically inspected. Upon
initial inspection, the gray market components appeared fairly
different from the authentic ICs. Fig. 4 shows a top-down
comparison of all tested IC groups. The first and third rows
(including the two authentic Atmel lots) show the authentic ICs
acquired from a trusted supplier, and the second row shows
the gray market suspect ICs. Given simple marking deviation
analysis, a couple of Atmel suspects would be flagged due
to varying marking types (e.g., laser engravings compared
to ink). Additionally, the markings on the Maxim and NXP
suspects strongly deviated from their authentic counterparts.
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TABLE I

CROSS-CORRELATION ANALYSIS COMPARING INTRAGROUP, INTRAVENDOR, AND INTERVENDOR SEGMENTS OF 8051 FINGERPRINT DATA

Upon further investigation, we identified variations within
the reflection patterns of the package surface depending
upon which DUT we tested. These variations could be
seen even between the original and second Atmel authen-
tic groups. The observations made from physical inspec-
tion should not be considered conclusive in determining
the authenticity of a given DUT. In this article, authen-
tic ICs are identified as identical designs in silicon (i.e.,
the exact placed and routed design). For example, if the
Atmel 8051-series ICs are considered authentic, the Maxim
and NXP ICs can represent remarked or cloned ICs, as they
are functionally similar. Here, our EMFORCED analysis
will demonstrate the importance of investigating the physi-
cal parameters of the die rather than the visible differences
between DUTs.

As previously alluded to, cross-correlation analysis is the
fastest implementation of comparing a small number of device
fingerprints and determining whether the DUTs are the same
type of IC. The primary difference between the output analysis
of PCA and cross correlation is that PCA will classify all
DUTs within one of N groups, based upon the distance to the
nearest training data, while cross correlation will not group
all DUTs unless specified above a given cutoff correlation.
Additionally, cross correlation will work in all of the scenarios
outlined in Section II-D, as it is inherently a reference-free
technique as it does not require a golden reference. Table I
summarizes our comparisons of all 640 fingerprints against
one another. Grouping ICs based upon their vendor and date of
acquisition, the seven categories that we tested are provided.
It should be noted that in our experimentation, we disabled
cross-correlation calculations at nonzero lag conditions as
our data were prealigned with the triggering mechanism on
our oscilloscope, expediting the processing time. The average
intragroup cross correlation determines how alike ICs of a
given group are to one another. Empirically, we determined
that time-domain cross correlation at or above 90% is typically
a good indication of similarity, as two fingerprints from the
same device can vary due to measurement noise. In Table I,
we note that all but the gray market NXP chips appear
well correlated within their respective groups. The exclusively
averaged intravendor cross correlation describes how well the
tested group aligns with the other group(s) from the same
vendor. Here, we begin to identify that the NXP trusted and
gray market ICs behave very differently. While both Atmel and
Maxim groups are very well correlated with intravendor cross
correlations of over 90%, NXP appears to be limited to ≈57%.
To ensure that the NXP gray market ICs were not remarked

Fig. 5. Projected (3-D) PCA training data for all authentic ICDs using the
first three principal components.

from another IC, we also provided the average intervendor
cross correlation that appears consistently low across all device
groups.

B. Reference-Inclusive Experimental Overview

To properly classify any suspect DUT, we have developed
a layered approach, as previously described in Section III-C2,
which accounts for known reference information during clas-
sification. First, a PCA model was trained using our reference
fingerprints, which reduced our fingerprint feature dimension-
ality of 250 000 down to 339. Fig. 5 shows the projections of
all authentic fingerprints plotted using their first three principal
components. Our authentic reference set consists of all ICs
from Atmel trusted groups 1 and 2, Maxim trusted, and NXP
trusted. The groupings are easily distinguishable, similar to
those seen in Fig. 3, although this model was trained on
340 samples rather than 45, thus strengthening the model.
Next, the suspect fingerprint measurements from the gray
market ICs are projected into our existing PCA model. The
projected suspect data (denoted by an S) has been overlaid
onto the reference data in Fig. 6. It can be seen that the
Atmel and Maxim suspect DUTs mostly remain within the
existing authentic region, while the NXP fingerprints deviate
significantly from their designated group, spreading across
all different groups. This suspicious behavior reiterates the
results acquired in our reference-free cross-correlation analy-
sis. To ensure classification accuracy, we processed the suspect
data through outlier detection, which compares the suspect’s
PCA projections against each of the known good groups. From
our analysis, we observed 96% and 97% inlier classification
for Atmel and Maxim suspect ICs, respectively. However,
NXP suspects classified as outliers 80% of the time. Given
this level of deviation from the trusted NXP parts, we can
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Fig. 6. Comparison between authentic and suspect fingerprints using the first
three components of their PCA projection. ATS, MXMS, and NXPS refer
to suspect ICs of the respective manufacturers.

comfortably assume that these parts are counterfeit. Alter-
natively, they may have been recycled and preprogrammed
or there was a die revision between the Phillips to NXP
transition that physically changed the IC’s design [28]. At this
point, we had not had any cases of multiple inliers being
detected, but to confirm that the 4% outliers identified within
Atmel and Maxim were, in fact, authentic, we classified
them with a supervised machine learning technique named
LDA. We entered all of the PCA projected trusted fingerprint
data to LDA and observed 0% resubstitution classification
loss. This means that the PCA projected data were perfectly
separated as the groups could be clearly defined. Once the
suspect Atmel and Maxim parts were predicted using our
trained LDA model, we saw 100% accurate classification.
Likewise, the NXP chips appeared to deviate into all the class
options, leaving some to be identified as Atmel, Maxim, and
NXP, furthering our hypothesis. As alluded to earlier during
the physical inspection process, the Atmel and Maxim parts
would have likely been misclassified as counterfeit parts when
they are, in fact, authentic designs. The suspect NXP parts,
however, do not exhibit the same characteristics that we should
expect from a new NXP 8051 and are identified as highly
suspect.

C. Multivariate Analysis

So far, our experimentation has focused exclusively on
identifying a given device by using a single parameter. Here,
we explore the potential of introducing multiparameter testing
and provide insights into how this could maintain high classi-
fication accuracy while expanding the number of IC types.
Utilizing multiple parameters for counterfeit detection also
makes EMFORCED classification more robust and difficult
to attack (see Section VI). The tests discussed next focus
on EM-based approaches, but combining EM with another
measurement, such as power analysis or optical inspection,
is also possible.

1) Exploiting Spatial Probing Parameters: In the approach
described in Section IV-B, all measurements were taken from
the center of the DUT. This was done to maximize the EM
response collected from the die itself. In order to study the
impact of probe location on the DUT, we measured EM
emission from various regions on the IC package. A sample
snapshot, with package locations, is shown in Fig. 7, which

clearly shows that EM measurements vary between different
locations. This approach will provide another degree of dif-
ficulty for an attacker attempting to fool the EMFORCED
detection framework. When attempting to simulate/clone the
EM fingerprint, they would now be required to incorporate
the spatial location of the measurement probe in addition
to the on-chip EM radiative grid itself.

2) Measurement Distance Accuracy: Having explored the
�X, Y � plane on the surface of the DUT, we sought to
determine whether modifying the proximity of the probe to
the surface, or Z -axis, provided any additional information.
Changing the probe’s vertical location relative to the chip
surface is not ideal for extracting circuit switching noise for
applications, such as crypto-key extraction (since we desire the
highest signal-to-noise ratio). However, since our technique
is targeted at extracting a design-specific signature, we are
able to see added physical effects from slightly farther-field
measurements. Fig. 8 shows the example result of how nor-
malized cross correlation of the acquired signal changes when
measuring EM with a near-field probe while introducing a
separation distance. Modification of the probe height allows
for the radiation to travel a bit further. This would allow the
wave to interfere with itself to create new information similar
to what was seen in the �X, Y � plane, as shown in Fig. 7.

To determine the potential effectiveness of varying the probe
proximity, the normalized maximum cross correlation between
the signals obtained at different heights was calculated for an
Atmel device. In Fig. 8, the blue Atmel line shows the cross
correlation between an Atmel measurement while contacting
the device (i.e., a separation distance of 0 mm) and at varying
distances. For the low separation values with high cross cor-
relation, this implies confidence in the measurement environ-
ment, i.e., even with a small height variation, the classification
results should remain the same. Upon moving further away
from the device (below ≈90% cross correlation or ≈2 mm),
the collected waveforms should contain an adequate amount of
new information to be introduced into the analysis. The green
and blue lines provide insights into the similarity between the
Atmel measurements at a given distance when compared to
the Maxim and NXP responses on contact. Notice that at
every separation distance, the cross correlation between the
Atmel device and the other vendors remains fairly consistent.
This shows that the waveforms collected from measuring
at a distance provide additional information that not only
deviates from the intravendor measurements but also maintains
a considerable uniqueness in intervendor comparisons. Finally,
it should be noted that the dimensions of the near-field
probe control the spatial sensitivity of collected fingerprints.
In our experimentation “authentic” ICs are defined as identical
silicon layouts. However, in future applications, finer probe
dimensions may enable differentiation between device date
codes and packaging locations.

3) Rotational Variations: In addition to modifying the rel-
ative position in the 3-D space of the near-field probe to the
DUT, changing the angle at which the probe is positioned
can dramatically impact the observed results. Fig. 9 shows
the cross correlation between the rotational measurements on
a single DUT. Depending upon the probe type and rotation,
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Fig. 7. Coarse sample of the numerous EM fingerprints available through changing the location of the probe relative to the die. (a)–(i) Probe positioning.

Fig. 8. Normalized maximum cross correlation between measurements from
various distances from the DUT.

Fig. 9. Cross correlation between rotational measurements on a single chip
under test.

the extracted fingerprint can provide significantly different
results. The angle measurements (in degrees) in Fig. 9 show
that the minimum temporal cross correlation between the
original and the new rotation can be seen at the 270° mark
with a mere 14.7% likeness. A cross-correlation value such
low signifies that there is less in common with this signal
than an entirely different IC design. It is important to note
that the cross correlation described in Fig. 9 is actually the
absolute value of the cross correlation; as such, the 180° cor-
relation value appears as 90.1% rather than the ideal −100%
correlation.

4) Input Voltage Variation: Until now, EM signatures were
extracted from the ICs while maintaining typical operating
conditions, that is, no burn-in tests were performed that might
damage the DUT. This is because the EMFORCED framework

Fig. 10. Normalized maximum cross correlation between the near-field
measurements taken with various input voltages.

allows for the DUT, once proven authentic, to be used in
the system without losing any projected lifetime. However,
to observe the impact of the voltage variation, we applied var-
ious input voltages ranging from 3- to 5-V peak-to-peak for the
clock signal input. Variation of signal magnitude could provide
another dimension of interest when discussing multiparameter
analysis. However, it should be noted that utilizing out-of-spec
voltages on parts that are intended for use in a system after
testing is not recommended because this may create additional
faults and cause a reduction in projected device lifetime.
Such a method, which puts additional/out-of-spec stress on
the device, may be carried out in a postseparation device
sampling test to increase confidence in characterization while
maintaining low cost. Fig. 10 shows a similar comparison
as Fig. 8, with the cross correlation between Atmel devices
across a range of voltages and the specific vendor at 5 V.
The cross correlation within this voltage range seems to
be slightly higher than that seen from the distance analysis
although the same trend of uniqueness among both intravendor
and intervendor is apparent. As we do not have access to
information regarding the die-level operating voltage or the
surrounding voltage regulators and level shifters, it is difficult
to identify the physical parameters that could be the contribut-
ing factors to introduce this deviation. The DUT used in the
experiment was not designed to accept an input voltage less
than 4.5 V. Therefore, we could fairly assume that the decrease
in cross correlation, shown in the blue Atmel line of Fig. 10
below 4.5 V, might be attributed to such factors.
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Fig. 11. X-ray comparison between Atmel ICs from each group.

Fig. 12. X-ray comparison of all IC groups with dies outlined in vendor-
specific colors, Atmel, Maxim, and NXP in red, blue, and green, respectively.
Note that the yellow dotted outline shows the actual die outline of the gray
market NXP device.

D. Device Authenticity Analysis via X-Ray

To verify the results shown in section IV-B, an X-ray
machine was utilized to see inside of the package and
presents further insight. One should note that this process was
conducted after fingerprint extraction was completed as this
technique can damage older technology devices [29]. X-ray
images of the three Atmel groups are shown in Fig. 11. The
die area is outlined in red and the dimensions of the die are
consistent across all components, providing some confidence
that the ICs share the same physical design. However, a closer
inspection of the IC frames and bond wires showed slight
variations among each group, including double bond wires
to a single pin, substrate connections to the ground pin, and
pin width variations. These devices would require further
inspection as the frame may vary by packaging facility, but
given our observations, it is likely that all suspect DUTs would
have failed visual inspection or required additional invasive
inspection [30].

Expanding our X-ray analysis to the remaining groups
shown in Fig. 12 shows that the pad frame varies within
each of the vendors. Atmel and Maxim devices maintain the
same die dimensions regardless of the pad frame and bond
wire characteristics. However, NXP’s trusted sample (shown
in green) appears to be significantly smaller than the gray
market variant (outlined in yellow). Fig. 12 shows the NXP

gray market IC with the actual die outline overlaid with the
green, expected, die dimensions. Here, we can confidently
state that the silicon design is different between the NXP
authentic and suspect devices. This difference in die size
may be a result of a die revision, likely at a more advanced
technology node, since the gray market part was sourced from
a batch labeled as Phillips (which was acquired by NXP).
Functionally testing these NXP ICs functionally may yield
equivalent results as they are listed as the same product,
although various applications could take advantage of the
benefits from a larger or smaller technology node for reasons
such as power efficiency. These X-ray results confirm our
EMFORCED results, along with providing evidence against
standard physical inspection techniques which would likely
misclassify our suspect parts, while showing a significant
speed advantage while maintaining classification accuracy.

V. SETUP VARIABILITY CASE STUDY

The experimental setup used throughout this article
remained consistent unless otherwise noted. To transition novel
detection methods from laboratory environments to real-world
solutions, tolerance to product variations must be accounted
for. To demonstrate the variability introduced by the setup
itself, three additional Mikroelectronika 8051-Ready devel-
opment boards were sourced. Upon receipt, the PCBs had
noticeable differences among the surface-mounted compo-
nents, including a different brand or tolerance of power regula-
tion IC, communication IC, and electrolytic capacitor. Despite
maintaining the same board revision number of 1.10, these
components had been modified. Fingerprints were collected
on each of the four development boards using a single Atmel
IC for all measurements. Fig. 13 shows the cross correlation
among each of the 25 samples per board with representative
fingerprints from each PCB. The inter-PCB cross correlation
averaged across all PCBs tested was 97.51%. The new PCB
group showed an average 97.04% cross correlation across
all three PCBs. This shows that the variations introduced
by switching identical PCBs were negligible for classifica-
tion using the EMFORCED framework. As previously stated,
a cross-correlation value of below 90% should provide enough
differentiating information to be considered a different finger-
print. The average cross correlation between the original and
new groups amounted to 89.03%. The differences between the
original and newly sourced PCBs may introduce ample varia-
tion to be identified as counterfeit. To mitigate this, sourcing
identical measurement components and applying calibration
methodologies to a collected fingerprint may be desirable.
Within the constraints of this article, variations of 89% can
be included in the authentic group if desired as the Maxim
and NXP components separate below 62% cross correlation.

VI. ATTACK RESILIENCE ANALYSIS

The primary goal of an attacker would be to replicate an
authentic EM fingerprint on a design of his or her choosing.
As our fingerprinting technique enables the verifying party to
gain insights into the inner workings of the DUT, the attacker
would be required to emulate the complex RLC network
responsible for modulating the input waveform and emitting
it with spatial accuracy. This would likely require substantial
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Fig. 13. Cross-correlation comparisons between two iterations of the
Mikroelectronika 8051 development board.

assets to not only fabricate the malicious design but also
attempt to closely match the EM emissions with temporal
and spatial resolution. Modern EM-based simulation tools lack
the ability to estimate complex model structures with spatial
accuracy while accounting for the effects of the surrounding
network. Most EM emission approximation methods rely upon
either utilizing the physical parameters of a single fundamental
device (e.g., a single transistor) for nano-scale experiments or,
through circuit simulation, calculating the total circuit switch-
ing activity. These methods will not be successful in generating
an accurate EM profile of a given design, as simulations based
on physical parameter testing are not scalable at this time.
Should an attacker gain access to a simulation tool with this
capability, they would be required to modify the placement
and routing constraints of their circuitry to comply with the
desired fingerprint, which, for more complex circuits, could
be nearly impossible. If the attacker was able to create an
effective model and an accurate cloned signature when probed
from the center of the die, the fabricated version of the device
may still not reproduce the same fingerprint, depending upon
foundry-specific variations and packaging constraints.

It should be noted that there are certain limitations to the
robustness of our approach. For example, the noise intro-
duced by the near-field EM probe and measurement equip-
ment provides an inherent tolerance within the measurement
environment. This could create cases where an authentic
and counterfeit IC would exist within a certain threshold.
Manufacturing variations and spatial resolution of the probe
further expand this tolerance. An attacker could potentially
use this tolerance to create a cloned signature that conforms
to these metrics although modification of a desired design to
replicate an authentic fingerprint would require a trial and error
methodology. We note that the use of a programmable stage
that allows accurate positioning of the probe and reduction
of measurement-to-measurement variation should reduce this
vulnerability by providing tighter bounds on the classification.
Additionally, the introduction of multivariate authentication
would further limit the potential for misclassification.

VII. CONCLUSION

We have demonstrated that our EM-based fingerprinted
framework EMFORCED can effectively detect remarked
and cloned ICs. Multiple testing setups, including custom
breadboard, and standard development board implementations
were tested for effective fingerprint extraction with several
groups of 8051 ICs. EMFORCED reliably separated the DUTs

using reference-free classifications methods that consisted of
unsupervised machine learning technique, PCA, and cross
correlation. Reference-inclusive scenarios were also addressed
with a layered approach using PCA, outlier detection, and,
supervised machine learning technique, LDA. This allowed
for a confidence interval to be determined when classifying
an IC within a known group. To provide a glimpse of the
potential of EMFORCED to be scaled with multiple device
types and tunable confidence intervals, multiple variables
enabled by EM were analyzed within this article, showing
the numerous fingerprints that can be extracted from a single
IC. The low cost, ease of implementation, and potential
scalability of EMFORCED were provided a competent base
for remarked and cloned counterfeit IC detection within
today’s increasingly vulnerable electronics supply chain.
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