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A hardware Trojan is a malicious modification to an integrated circuit (IC) made by untrusted third-party
vendors, fabrication facilities, or rogue designers. Although existing hardware Trojans are designed to be
stealthy, they can, in theory, be detected by post-manufacturing and acceptance tests due to their physical
connections to IC logic. Manufacturing tests can potentially trigger the Trojan and propagate its payload to
an output. Even if the Trojan is not triggered, the physical connections to the IC can enable detection due
to additional side-channel activity (e.g., power consumption). In this article, we propose a novel hardware
Trojan design, called Soft-HaT, which only becomes physically connected to other IC logic after activation by
a software program. Using an electrically programmable fuse (E-fuse), the hardware can be “re-programmed”
remotely. We illustrate how Soft-HaT can be used for offensive applications in system-on-chips. Examples of
Soft-HaT attacks are demonstrated on an open source system-on-chip (OrpSoC) and implemented in Virtex-7
FPGA to show their efficacy in terms of stealthiness.
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1 INTRODUCTION

The unprecedented pressure of time-to-market and the ever-increasing cost of integrated cir-
cuit (IC) design and fabrication processes are forcing modern IC design flows to rely on intellec-
tual property (IP) blocks from third-party vendors and fabrication at third-party facilities. These
untrusted entities introduce the risk of including malicious circuits known as Trojans into the
hardware. In the last decade or so, design of hardware Trojans has received significant attention
[10, 25, 47, 59] with more Trojans designed at the register transfer level (RTL) and gate level.
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However, fewer Trojans have been designed to be inserted into the IC layout [9, 63]. Becker et al.
[9] proposed changes to transistor dopant location and density to implement an “undetectable”
hardware Trojan; however, Sugawara et al. [54] later debunked this claim by demonstrating that
these changes were indeed detectable by scanning electron microscopy (SEM). Later, Yang et al.
[63] proposed the A2 Trojan that leveraged analog circuits to create small and stealthy Trojans.
Further, A2 Trojans could be triggered from the software level, thereby allowing remote attacks.
Recently, however, Hou et al. [20] proposed the R2D2 technique to guard a set of sensitive signals
and initiate hardware interrupt requests when unusual toggling events (e.g., those in A2 Trojan)
occur.

The majority of the hardware Trojan design and detection techniques have focused on a type
of Trojan trigger that becomes live immediately when the chip is powered on [10, 25, 47, 59].
Although these Trojan triggers are stealthy by design, it is theoretically possible to detect them by
exhaustive logic tests as they are powered on. However, a Trojan that is not powered on during
production test, wafer test, assembly test, or acceptance test will never be detected using any of
the standard logic tests and side-channel tests. Moreover, if such a Trojan gets powered on without
physical access, it could bring ghostly modification in hardware. The sophisticated approach one
could use is establishing a software trigger to make the Trojan live. Once it comes into existence,
the hardware Trojan awaits its trigger to carry out its intended payload. The software trigger is
the attacker’s secret that can be carried out for a chip used in a cloud/data center, on internet-of-
things (IoTs) and other network-connected devices. The software program can either be directly
used by the attacker or by injecting it as malware to power-up the Trojan. We call such Trojans,
Soft-HaT, software enabled hardware Trojan.

In the domain of security, most work assumes that the hardware is trusted and immutable when
it is deployed in the field in contrast to software which can be updated. The security measures
are developed to mitigate threats such as malware, considering underlying hardware is trusted.
For instance, malware changing the behavior of a system can be mitigated by anti-malware or
authentic software since it does not damage the physical hardware of a system. In developing
Soft-HaT, we demonstrate that the hardware can also be modified remotely and invalidate the
concept of trusted immutable hardware. Thus, the software-based hardware change can undermine
the existing security countermeasures. Further, modification in hardware is permanent; hence,
software or hardware patch cannot fix it, unlike malware.

In general, once an IC has been manufactured, the internal logic design cannot be changed,
but the non-volatile storage mechanisms can provide new opportunities to modify it. Non-volatile
memories, such as the E-fuse, anti-fuse, and flash, are fundamental components of an electrical
system that are used to store boot code, encryption keys, firmware, configuration code, and para-
metric yield recovery, among others. [6]. E-fuses are popular solutions in this regard since they
allow permanent storage at the post-fabrication stage [27, 46] by electrically blowing a fuse. Here,
Soft-HaT leverages the E-fuse programming feature to achieve the desired post-fabrication silicon
changes.

We employ hardware programming to create software-enabled hardware Trojans at the post-
deployment phase by modifying the existing logic using E-fuse programming. The E-fuse con-
sumes a small area and can be fabricated with traditional CMOS technology [30]. Thus, this elec-
tric component can be easily added and hidden in large ICs. In addition, the remaining Soft-Hat
components (trigger and payload) are inactive before the fuse is blown; therefore, Soft-HaT does
not conform to any of the previously designed Trojans. Currently, there is very little effort in
designing such Trojans. The closest would be the A2 Trojan [63]. However, one of the funda-
mental differences of the proposed design compared to existing work (like A2) is that an attacker
needs to execute the software program to physically change the hardware logic and create the
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Table 1. Comparison of Trojan Detection Techniques

Trust-Hub [49, 50] | Moles [33] Reliability [51] | Dopant [9] A2 [63] Soft-HaT
Insertion | Design Design Fabrication Fabrication | Fabrication | Fabrication
Trigger Hardware Always on | Always on Always on | Software Software
Effect Temporary Permanent | Permanent Permanent | Temporary | Permanent
Mutable No No No No No Yes
Testable Yes Yes Yes Yes Yes No

Trojan. This property makes this design very stealthy since it is non-trivial to detect such one-
time modification in hardware by runtime detection techniques. One way to identify logic mod-
ifications is physical inspection using imaging. However, this method requires a known “golden
layout” of the design that is very hard to obtain, especially for commercial off-the-shelf (COTS)
ICs.

Comparison with existing Trojan designs. Table 1 presents a relative comparison between existing
Trojan designs and Soft-HaT. Trust-hub Trojans [49, 50] in column 2 represent a series of standard
Trojan benchmarks in which greater than 90% are assumed to be inserted at the design stage. These
design-level Trojans are mostly triggered by a hardware component, such as a counter, meaning
that they may not be triggered remotely, and their payload effect is temporary, meaning that the
payload’s effect is gone when the system is reset. Moreover, these Trojans have been shown to
be testable/detectable by both pre- and post-silicon Trojan detection techniques [37, 38]. Moles
[33] is also a design-level Trojan that is “always on,” meaning that the attacker has no control
over its payload delivery, as its effect is permanent. Moles is also vulnerable to side-channel-based
detection techniques [40]. Reliability- [51] and dopant [9]-based Trojans are inserted at the fab-
rication stage and have a permanent effect on the system. However, these techniques provide no
control over the Trojan trigger and have been shown to be detectable [54, 58]. A2 [63] is a state-
of-the-art Trojan that is also inserted at the fabrication stage. One unique feature of A2 is that it
can be triggered remotely. However, A2 is also shown to be detectable [20] and its effect is tem-
porary, and therefore it can never be used to implement a kill switch, which can permanently
disable the system. All of these Trojan designs are not mutable after fabrication, and they remain
powered on during the testing phase, which in theory makes them testable. The Soft-HaT, how-
ever, is mutable after fabrication and remain powered off during the testing phase, which makes
it truly untestable. In addition, this feature allows Soft-HaT to implement a kill switch that can
permanently disable the system. Soft-HaT also features software-based programming and a trig-
gering mechanism that allow a remote user to attack a server or a cloud system. In addition, Soft-
HaT’s payload effect can be made permanent to design a kill switch that can instantly disable any
system.

Our major contributions. We summarize the major contributions of this work as follows:

(1) We design a stealthy hardware Trojan, Soft-HaT, that becomes live by software-supported
hardware programming. Since the Trojan is not powered on until programming, it can
evade all existing logic tests and verification processes.

(2) We utilize existing IC signals, minimal analog circuitry, and a deliberately designed soft-
ware program to permanently modify the hardware. This method offers the capability
to remotely change the hardware of network-connected devices at the silicon level after
fabrication or deployment in the field.

(3) We evaluate and verify the stealthiness of the proposed Soft-HaT against existing Trojan
detection methods.
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Fig. 1. Modern IC supply chain and vulnerabilities.

(4) We develop two examples of Trojan payloads to demonstrate the severity of attacks. One
of them leaks data from privileged memory that is only accessible to authorized users and
the other permanently disables critical systems.

(5) The proposed Soft-HaT design and payloads have been demonstrated in OrpSoC (an open
source SoC with a RISC processor) in Virtex-7 FPGA.

The rest of the article is organized as follows. In Section 2, we discuss IC supply chain vul-
nerabilities focusing on the hardware Trojan. The proposed software-enabled hardware Trojan,
Soft-HaT, and its threat model are discussed in Section 3. We describe the implementations in Sec-
tion 4. We present payload designs in Section 5. Hardware demonstrations of Soft-HaT behavior
are presented in Section 6. We examine the stealthiness of Soft-HaT in Section 7. Finally, Section 8
provides future directions and concludes the article.

2 PRELIMINARIES

In this section, we start with an overview of the IC design process and discuss the hardware Trojan
threats.

2.1 Vulnerability of the IC Supply Chain

Advanced semiconductor technology requires prohibitive investment for each stage of the IC de-
velopment procedure. For instance, the capital cost for a 40-nm-capable foundry is $20 billion [22].
For the newest technology node (e.g., 7 nm), the estimated average IC design cost is $271 mil-
lion [22]. As a result, most semiconductor companies cannot afford to maintain such a long supply
chain from design to packaging. To lower manufacturing cost and speed up the development cycle,
the design houses typically outsource fabrication to a third-party foundry, purchase third-party
IP cores, and use electronic design automation (EDA) tools from third-party vendors. The use of
untrusted (and potentially malicious) third-party IP vendors and foundries increases security con-
cerns of insertion or modification of hardware.

The complexity of IC design and fabrication has increased dramatically, as illustrated in Figure 1.
At the first step of the process, IC specifications are translated into a behavioral description, gen-
erally represented by an RTL abstraction. The RTL design goes through extensive functional test-
ing to verify the functional correctness of the IC. Next, RTL is synthesized with a manufacturing
technology node into a netlist (i.e., a schematic containing logic gates, registers, and latches). The
design house either integrates design-for-test structures to improve the testability in-house or out-
sources this step to third-party vendors. In the next step, logic gates are converted into physical
layout format or GDSII (i.e., a set of planar geometric shapes and text labels representing transis-
tors and their interconnections), and are handed to a foundry for fabrication. It is becoming more
common for the design house to employ third parties for generating the physical layout and use
hard IPs provided by third parties. The E-fuses used in Soft-HaT are added to the design in the
deep layout by the foundry or these third parties. Once the foundry produces the wafers, each
die goes through test. An assembly packages those ICs that pass wafer testing, re-tests them, and
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Int x =10, y=0; Int x =10, i=0; Int x =10, y=0;
double f = 0.9991 While(i<50) double f =0.9991
If(x==10&f== { f(x==108&f==
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Fig. 2. Hardware Trojan operation in a traditional method and the proposed method.

sends them to the market. In an ideal world, the ICs are properly recycled at the end of the life
cycle.

2.2 Hardware Trojan

A hardware Trojan is defined as a malicious, intentional modification of a circuit that results in
undesired behavior when the circuit is deployed in a system. ICs containing a hardware Trojan may
experience changes to their functionality or specification, leak sensitive information, experience
degraded or unreliable performance, or suffer a denial of service (DoS) [4]. The modification can
affect any type of IC, such as the microprocessor, graphics processing unit (GPU), digital signal
processor (DSP), application-specific integrated circuits (ASICs), system-on-chip (SoC), and field-
programmable gate array (FPGA). The Trojans can affect a system by themselves alone or provide
a foothold for software-based attacks, where colluding software is aware of the inserted Trojan. A
more detailed review of these threats can be found in various surveys [8, 11, 47].

Hardware Trojans are designed to be stealthy by intelligent adversaries. The Trojans could be
inserted at the behavioral code, gate-level code, or physical layout stage. In this work, we consider
that malicious hardware has been added at physical layout design, and thus changes are made to
the IC layout. As mentioned earlier, foundry and third-party vendors are involved in layout design
and fabrication; they are considered adversaries in this work. Figure 1 shows rogue/untrusted
entities in the red boxes who can create Soft-HaT malicious hardware.

In general, a Trojan contains two basic parts: trigger and payload. A Trojan trigger is an optional
part that monitors various signals and/or a series of events in the circuit. The payload usually
taps signals from the original (Trojan-free) circuit and the output of the trigger. Once the trigger
detects a pre-specified event or condition, the payload is activated to perform malicious behavior.
Typically, the trigger is expected to be activated under extremely rare conditions, so the payload
remains inactive most of the time. When the payload is inactive, the IC behaves like a Trojan-free
circuit, making it difficult to detect the Trojan.

3 SOFT-HAT

We describe the fundamental concept of Soft-HaT attack and discuss the threat model in the fol-
lowing sections.

3.1 Basic Concept

Figure 2 shows a high-level overview of a traditional Trojan and Soft-HaT. A traditional Trojan is
typically triggered by signals originating from hardware, such as a counter. This property limits
the attacker to trigger the Trojan remotely. The A2 Trojan overcame this limitation by supplying
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Table 2. Summary of the Soft-HaT Attack Model

- Foundry.

— Third-party hard IP vendors.

— Evade the post-fabrication test and verification.
— Hardware modifications after deployment.
Threats — Immune to software patch.

— Can be designed to steal sensitive information
(i.e., access privileged memory, obtain private key).
- IC is connected to a network.

- Adversaries have access to layout file.
Assumptions - Adversaries have knowledge about IC behavior.
— Physical attacks (e.g., optical probing) and
focused ion beam attacks are not considered.

Adversaries

the trigger from the software level assuming that an adversary can run the triggering program
(shown with a dotted gray line in Figure 2(a)). However, all existing Trojans remain powered on
regardless of being triggered, meaning that they are testable. In addition, traditional Trojan pay-
loads are mostly limited to hardware, meaning that they cannot be exploited from the software
level. In addition, Trojan payloads have temporary effect, meaning that the effect will be nullified
once the system resets. Soft-HaT addresses these fundamental limitations by making the hardware
programmable after fabrication from the software level.

Soft-HaT introduces two additional components: program circuit and software payload (marked
in blue in Figure 2(b)) to the traditional Trojan circuit. The program circuit utilizes the E-fuse to
achieve post-fabrication programmability of hardware. The program circuit, as well as the trig-
ger circuit, are controlled from the software level using an attacker’s secret program. One of the
novelties of Soft-HaT is that the trigger has no impact on payload until the Trojan becomes ac-
tive. Thus, the Trojan can be triggered by using any internal wire, unlike the traditional methods
where triggering conditions have to be rare to avoid detection. As a result, Soft-HaT provides a
wide range of opportunities to carry out the attack remotely with a non-malicious program with-
out compromising stealthiness. Once Soft-HaT is programmed, it can be triggered to deliver its
payload both at the software and hardware levels. Software-level payload will allow the attacker
to remotely retrieve secret information from the hardware, whereas the hardware payload will al-
low the attacker to modify the hardware logic and design specifications, and to make irreversible
changes in hardware.

3.2 Soft-HaT Threat Model

In this section, we present the threat model of Soft-HaT attack. Table 2 shows the summary of the
attack model, and details are described in the following sections.

3.2.1 Potential Adversaries. The proposed attack model can be implemented at the fabrication
phase, as it contains analog circuitry that is integrated at the back end of the design. Thus, we
consider that a foundry is a potential adversary to mount this attack. Another possible adversary
is the third-party physical layout vendors, since they provide pre-verified “hard” IP. Such hard IP is
often provided as a black box to the design house to maintain a competitive advantage in the niche
market [25] and thus does not necessarily reveal itself to the designer. The proposed Trojan circuits
are added to the layout design. We assume that other entities involved in the design process, such
as IC design, verification, and synthesis, are trusted.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 4, Article 35. Pub. date: June 2020.



Soft-HaT: Software-Based Silicon Reprogramming for Hardware Trojan Implementation 35:7

3.2.2 Capabilities of Adversaries. The potential adversary has access to the layout file and can
perform reverse engineering to find the potential victim circuit to insert a Trojan. The adversary
has some idea of the design that helps in designing effective Trojan payload. Design specifications
and fabricated products that are available in the market could be used as a reference model to re-
verse engineer the layout file. One of the main challenges for the adversary is to maintain the lay-
out structure as defined by the design process. Any modification in layout might alter the physical
location for some or all of the design components, thus changing their delay and power charac-
teristics that would facilitate Trojan detection. Soft-HaT uses existing wires to generate hardware
programming signals and adds minimal analog circuitry to implement the Trojan payload. Given
the large size of the modern IC, these additions are insignificant and unlikely to increase the di-
mensions of the chip or require existing components in the IC to be moved around.

3.2.3 Assumptions. The proposed threat model assumes that IC design follows the specifica-
tions. These lead to the fact the RTL design, placement, routing, layout design, test, and verification
processes are appropriately conducted. Thus, it ensures that the logic design reverse engineered by
adversaries is functioning correctly and Trojan insertion will result in the desired change/addition
of functionality of adversaries. We assume that the manufacturing test follows state-of-the-art
testing, such as structural and functional tests. The proposed Trojan is based on the E-fuse, which
remains inactive as long as the proper software programming sequence is not executed. The cur-
rent test procedure does not necessarily cover the test pattern for these hidden circuits and thus is
unlikely to blow the E-fuse. We also assume that physical inspections cannot differentiate Soft-HaT
from the rest of the circuit. We consider that Soft-HaT-inserted ICs are connected in a network and
running in the field. An attacker can gain access to the connected device and execute a program to
activate Soft-HaT. Network-connected systems are found in nearly every aspect of modern society,
and they are vulnerable to Soft-HaT. For example, consider a modern SoC in a PC or smartphone,
which are systems often connected to the Internet. As the user browses a website, a script from
the website could execute the secret activation program on the SoC.

4 SOFT-HAT IMPLEMENTATION

Soft-HaT needs hardware components and a program to modify the inserted hardware. The hard-
ware components are E-fuses and programming and trigger circuits. Additionally, we can include
a sensor circuit that allows an attacker to read the programming status of the E-fuse. The software
program that powers on Soft-HaT is known to the attacker. A brief discussion of each of these
components is given in the following section. After that, we describe Soft-HaT programming and
triggering mechanisms to carry out the intended payload.

4.1 Hardware Components of Soft-HaT

4.1.1 E-fuse. In general, hardware designs are static and cannot be changed once the designs
are fabricated. However, the E-fuse has been extensively used by manufacturers and design houses
to store information, calibrate post-silicon performance [30], provide integrity of firmware [24],
and disable selected tests and debug [14], among others, after fabrication. In this work, we utilize
the E-fuse to make changes in the hardware design. In contrast to the aforementioned common
uses of the E-fuse, the changes we make to the chip occur post-deployment rather than at the fab
or original equipment manufacturer (OEM).

The E-fuse exploits electro-migration phenomena to change the resistance of a metal intercon-
nect from an unprogrammed to a programmed state [55]. An unprogrammed E-fuse exhibits a low
resistance state (50 to 100 ohms) and therefore represents a short circuit. Once programmed, the
E-fuse is said to be “burnt.” A programmed E-fuse exhibits a high resistance state (approximately
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Table 3. Technology Parameters of an E-fuse

Process 32-nm high-K metal gate
Cell area 1.37 ym?
Operating voltage 05-15V
E-fuse programming voltage 1.8-2V
E-fuse programming time 1us
Vout,i Voutit1

Caiall:jf:”_ ; v ii,f

H |
;FX%;

CLK,
CLKy Vingi CLK, CLKy Vinjir1 L

Fig. 3. The ith and (i + 1)th stages of the voltage doubler as the programming circuit. The number of stages
depends on the design parameters and the required output voltage.

10 to 100 Kohms [1]) and thus can be represented as an open circuit. Table 3 presents the char-
acteristics of and requirements for programming a state-of-the-art E-fuse for a 32-nm technology
node. As shown in Table 3, the E-fuse requires a programming voltage approximately twice the
operating voltage of gates in the IC. Therefore, additional circuitry is required to burn the E-fuse.
The activation circuit shown in Figure 3 performs this operation. Table 3 also shows that the area
footprint of an E-fuse is quite small (1.37 gm? in a 32-nm technology node), typically in the same
order of a standard NAND gate. Therefore, it can hide deep in a modern SoC design that contains
millions of logic gates.

Note that our proposed technique is also compatible with anti-fuse technology [36]. The dif-
ference between an anti-fuse and an E-fuse is that an anti-fuse exhibits a high resistance value in
an unprogrammed state. It changes to low resistance when programmed. This work considers the
E-fuse as a programming component, as it requires lower programming voltage than anti-fuse.

4.1.2  Programming Circuit. The programming circuit is responsible for generating a high volt-
age to burn the E-fuse. In many applications, such as power ICs, filters, memories, and switched-
capacitor transformers, voltages higher than the power supplies are frequently required [16, 53,
57]. Voltage doubler circuits are CMOS compatible and widely used in many devices to convert
on-board low voltage to high voltage. A voltage doubler can be integrated on chip for supporting
the burning process of the E-fuse. Kulkarni et al. [29] presented the high volume manufacturing of
E-fuses and demonstrated the programming process in 1-Kbit E-fuses fabricated in a 22-nm tech-
nology node. This design is fully compatible with low-power SoCs. Since Soft-HaT targets SoCs,
the charge pump circuit designed and fabricated in Kulkarni et al. [29] is well suited for Soft-HaT.
The output level can be controlled by the number of stages and/or the frequency. Figure 3 shows
the basic stages (consecutive stages any i*" and (i + 1)*") of the charge pump that produces the
voltage doubling. Each stage has two unit cells (Phase and Phase#) driven by non-overlapping
clocks (CLKy and CLK}) and operates with complementary timing. In this work, a software pro-
gram (known only to the attacker) is used to provide this clocking signal. Capacitors are used
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Fig. 4. Sensor circuit for Soft-HaT Trojan.

for the main boosting (Cm) and supporting capacitors (Cal, Ca2) that drive the charge-discharge
switches (NC — PD). The details of the circuit parameters are proprietary to the industry and are
outside the scope of this work, as this work focuses mainly on the design of a hardware Trojan.

The design of the voltage doubler (i.e., the number of stages, the transistor, and capacitor param-
eters) depends on the input voltage and the required output voltage, as well as the frequency and
the pulse width of the clocking signal. It also depends on the process technology used in voltage
doubler topology. This work considers using an existing voltage doubler circuit that is currently in
use in the industry. However, other CMOS-based voltage multiplier circuits, such as the Dickson
charge pump [35], can also be used.

4.1.3  Sensor Circuit. Once the E-fuse has been programmed, the attacker needs to know its
modified status. A simple sensing circuit has been incorporated into this architecture to read the
status of the E-fuse. Figure 4 shows the design of the sensing circuit where the Sense signal acti-
vates the PMOS pass transistor and Vs, ,s. provides the voltage across the E-fuse. The Vs, signal
provides a high voltage if the resistance of the E-fuse is high (i.e., in the programmed state) and
low voltage if the resistance is low (i.e., in the unprogrammed state). The Vs.,se signal is passed
through a circuit to make it readable from the software level. The status of the E-fuse confirms
that hardware modification has been completed. This change is permanent, and thus reading it
once might be sufficient for the attacker.

The sensor circuit is an optional part of Soft-Hat and is included to provide the attacker with a
confirmation that the E-fuse has been successfully burnt and the hardware modification has been
completed. This confirmation facilitates the attacker to coordinate the release of Soft-HaT payload.
In the absence of a sensor circuit, the attacker can run the trigger program but might not be able
to directly observe the status of the E-fuse or the payload.

4.1.4  Trigger Circuit. Once the Soft-HaT programs the E-fuse, the trigger circuit can deliver the
Trojan payload. The reason for having a trigger circuit in addition to a programming circuit is that
the adversary may not want the effect of Trojan payload to be permanent and deliver the payload
only during the attack to remain stealthy. The trigger circuit allows the adversary to deliver the
payload during the attack. The input to the trigger circuit is similar to the input of the programming
circuit. A specific set of opcodes and/or data can serve as a trigger. Alternatively, the trigger circuit
can also be designed intelligently to make the payload more effective. The difference between
programming and trigger circuits is that the programming circuit requires a long sequence of
clocking signals to program the E-fuse, whereas the trigger circuit requires one or a few signals to
deliver the payload.

4.2 Soft-HaT Program

The Soft-HaT program is the attacker’s secret that is used to generate the clocking signal that burns
the E-fuse. The program must not raise any suspicious behavior in both the hardware and software,
meaning that it resembles a set of legal instructions, such as addition, subtraction, multiplication,
and comparison. The program contains the specific instructions and/or operands that create the
clocking signals for Soft-HaT. Hence, the program is non-malicious and does not raise concerns.
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Fig. 5. Illustration of a Soft-HaT infected circuit.

A set of instructions is helpful to bypass any protection against running a code for several clock
cycles.

Another requirement of the Soft-HaT program is that the probability of finding it in any appli-
cation’s program needs to exponentially low. Let us assume that L number of specific instructions
and data required to power on Soft-HaT are n and m bits long, respectively. The probability of
finding this exact program can be calculated as

1
o(m+n)«L "

Pgetect = ey
Assuming a 32-bit architecture where both instruction and data are 32 bits and the required
number of clocking pulses is 100, the calculated Pge;cc; is 27%%. In other words, it is computation-

ally infeasible to find the Soft-HaT program.

4.3 Soft-HaT Operations

Here we incorporate the Soft-HaT components into a simple inverter circuit to demonstrate pro-
gramming E-fuse, sensing the E-fuse status, and then triggering techniques to deliver the payload.
Figure 5 shows the inverter (black region) and Soft-HaT (blue region). Here, the inverter receives
a signal Sig from circuit A and feeds Sig to circuit B. An attacker wants to control the Sig via the
Trig signal coming from the trigger circuit to implement a payload. The following sections discuss
Soft-HaT programming and triggering to achieve the attacker’s goal.

4.3.1  Programming Method. At first, Soft-HaT sends the clocking signal to the programming
circuit received from the software. The programming circuit increases the voltage of the clock-
ing signal (i.e., supply voltage) to the E-fuse programming voltage. The E-fuse programmer will
generate the clocking signal until the sensor circuit confirms the programming status. Here, the
software program is designed in such a way that the duration of the clocking signal meets the
E-fuse programming time.

Note that the unprogrammed E-fuse in Figure 5 acts as a short circuit path to ground. Therefore,
the Trig signal from the trigger circuit has no impact on the overall design (i.e., the Sig input going
to circuit B). After the programming phase, the E-fuse has very high resistance and modifies the
circuit functionality from an inverter to a NAND. Instead of Sig, Sig N Trig input will go to circuit
B. In other words, Soft-HaT becomes live and the trigger circuit gains control of circuit B.

The programming method described previously causes the hardware structure itself to change,
such as changing an inverter to a NAND gate. This change is permanent and irreversible. In addi-
tion, note that before Soft-HaT programming, all nets of programming, trigger, and sensor circuits
are untestable. The reason is that the unprogrammed E-fuse prevents theses circuits from having
any effect on the overall design.
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4.3.2  Triggering Method. The attacker will initiate the triggering method once he or she knows
that the programming has been completed via the sensor circuit. Here, the attacker uses a software
program to generate the triggering signal Trig. In Figure 5, when the correct triggering signal is
sent to the trigger circuit, it will deliver its payload by changing circuit B through the Trig signal.

The preceding example shows how Soft-HaT can modify the existing circuit components to
create a malicious one. Note that although we present this example using a simple inverter circuit,
Soft-HaT can be implemented in any complex circuit.

5 SOFT-HAT ACTIONS: PAYLOAD DEMONSTRATION

One can design a sophisticated Trojan, but the severity of threats is ultimately bounded by the
Trojan payloads. Attackers design payloads based on their attack goals, such as ranging from
leaking sensitive information, creating an intentional side channel, changing the specification,
disabling specific functionality, obtaining unauthorized access, or creating a DoS attack [8]. Soft-
HaT is compatible with most of these payloads proposed in the literature given that payload can
be inserted at the layout level.

A common assumption among Trojan researchers is that hardware Trojan payload needs to be
hidden to prevent accidental activation or activation during standard testing. This concept is based
on the fact that the Trojan payload is not detectable before deployment. It makes the attacker’s
job harder, and therefore the attacker needs to hide payloads under a complex trigger sequence.
One of the novelties in our proposed attack model is that payloads become live in the field after
hardware modification. Thus, it avoids the attacker’s concerns of being detected in standard testing
and provides a broad range of payloads.

Soft-HaT considers that Trojan-inserted ICs are connected in a network that allows an attacker
to execute the program to activate Soft-HaT remotely. Since network-connected systems are in
nearly every aspect of modern society, the attack surface of Soft-HaT is enormous. In this work,
we consider two payloads to demonstrate the severity of Soft-HaT attacks as a proof of concept.
One leaks sensitive information, whereas the other implements a kill switch to permanently disable
a network-connected IC.

5.1 Test Payload I: Leaking Information

This Soft-HaT attack aims to transmit sensitive information from an IC to the attacker without the
knowledge of the affected users. The ICs are in every aspect of our daily life and contain a lot of
sensitive information, such as the cryptographic key, log-in credentials, financial documents, and
personal information, and piracy of such information hampers social and economic life. The pay-
load can be designed to access restricted memory that facilitates privilege escalation. For example,
Meltdown [34] and Spectre [26] attacks on Intel and AMD processors exploit hardware vulner-
abilities to steal data from privileged memory locations and to get hold of secrets stored in the
memory of other running programs. These attacks exploit unintentional vulnerabilities in hard-
ware; however, Soft-HaT intentionally creates vulnerabilities that are not present in the original
design.

In this payload design, we add E-fuses into the memory management unit (MMU), which is
responsible for memory protection and cache control, and translation of virtual memory addresses
to physical addresses. The memory protection ensures that a process is not accessing memory that
is not allocated to it. We aim to disable this protection in the proposed payload that facilitates
unauthorized memory accesses.

A high-level block diagram of payload design is illustrated in Figure 6. We consider that Soft-
HaT modifies the hardware to power on the Trojan and triggers sequences that can impact the
payload. In general, the MMU converts the virtual memory addresses to a physical address to
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Fig. 6. Soft-HaT modifies the MMU and leaks restricted memory. For the sake of simplicity, only MMU,
CPU, and memory blocks are shown.

provide requested contents to the central processing unit (CPU). It also maintains privileged mem-
ory accesses of processes. The proposed payload uses the trigger sequences to bypass the access
restriction and allows malicious read. The payload can be extended by writing malicious contents
to other processes or privileged memory. Pseudocode and experimental results of this payload are
discussed in Section 6.

5.2 Test Payload II: Kill Switch

The Soft-HaT attack provides a broad range of possibilities for implementing kill switch and DoS
attack on network-connected devices. Existing payloads that range from partial service degrada-
tion to complete and permanent disabling of a device can leverage the Soft-HaT attack. One of the
primary challenges in designing the kill switch is to make irreversible modifications in the circuit,
and existing payloads take a long time to do that. For instance, payloads generating accelerated
aging [12] and consuming excess battery energy [44] require a long time to make an impact. The
runtime detection techniques [20] or on-chip sensor could detect such long-term anomaly. How-
ever, the proposed Soft-HaT is capable of making an instant change on hardware by hardware
programming. In the current state of the art, E-fuse programming time is less than a microsecond;
thus, the kill switch can be instantaneous and does not provide enough time for detection and
prevention. These characteristics make the Soft-HaT attack a dangerous kill switch.

Soft-HaT provides an excellent opportunity to create a controlled kill switch. An effective kill
switch should permanently disable critical circuit components. We add extra logic using E-fuse to a
microprocessor at the chip’s layout design phase. There are a lot of critical circuit components, such
as the bootloader, stack pointer, and program counter of a processor, driver, RAM, and non-volatile
memory, to carry out the job of the kill switch. In our work, we choose the program counter circuit
to modify the hardware. Accordingly, the E-fuse has been incorporated with the program counter
of the processor. Soft-HaT allows access to these E-fuse devices through a specific program.

The program counter is one of the essential registers in a processor that contains the address of
the next instruction going to be fetched [18]. As the current instruction gets fetched, the contents
of the program counter are used as the address for fetching the next instruction. Thus, a processor
in a system always keeps track of the address of the next instruction that must be fetched from
the instruction memory. In this proposed method, permanent hardware changes do not allow to
increase the program counter address and disables the regular program execution process. Figure 7
shows a program counter with added E-fuse programmable structure. For illustration purposes,
we did not consider other factors, such as jump and branch. The M is the amount by which the
program counter becomes updated in each cycle. The value of M is architecture dependent. The
program counter values are being updated as long as the E-fuse stays at logic “1” as shown in
Figure 7. The Soft-HaT program burns the E-fuse and results in permanent logic modification. As
a result, the digital logic associated with the E-fuse is modified to logic “0” from “1.” The program
counter cannot be updated and becomes a constant address.
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Fig. 7. lllustration of a kill switch to disable the program counter. Here, “M” is a constant added to the
program counter value to fetch the next instruction.

Table 4. FPGA Implementation of OrPSoC

Core LUT LUTRAM BRAM Registers Static Power
Processor 3,476 44 512 2,236 771 mW

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate Soft-HaT attacks on an open source SoC benchmark and discuss
the experimental results.

6.1 SoC Implementation in Hardware

We implemented an open source OrpSoC in FPGA to provide the proof of concept of Soft-HaT
attacks. OrpSoC is an open source design provided by MIT Lincoln Laboratory [31]. In our exper-
iment, an OR1200 processor [42], 32-KB of RAM, an 8-KB instruction cache, an 8-KB data cache,
AES, UART, and JTAG cores have been used in the SoC. The cores communicate through wish-
bone buses. The OR1200 processor is an implementation of the 32-bit or1k instruction set. The
test benches are developed using ¢ and assembly programs to obtain the desired logic behav-
ior from the SoC and are converted to low-level 32-bit instructions set using a GNU or1k tool
chain.

A Xilinx Virtex-7 FPGA VC709 board [62] has been used to implement the SoC. The FPGA is
manufactured at a 28-nm technology node and designed for high-performance applications. The
block RAMs of FPGA have been used as RAM of the SoC that holds the 32-bit instruction sets.
The standard UART modules are added to establish communication between the SoC and desktop.
The JTAG interface has been utilized to read, write, and monitor the internal signal of the SoC. We
used an FPGA onboard clock of 200 MHz for the system. Table 4 shows the hardware resources
utilized for implementation. The standard logic gate behavior of SoCs are mapped into look-up
tables (LUTs), registers, and LUTRAM. The FPGA used in this design does not offer the flexibility
of connecting an eE-fuse to our desired logic block, such as the program counter or memory unit,
and therefore limits us to perform E-fuse programming as required for the experiment. Thus, we
inspect internal wires of the SoC for trigger signal and examine the E-fuse programming circuitry
based on the observations of the silicon results.

6.2 Implementation of Soft-HaT

As discussed earlier, we used three steps for Soft-HaT implementation: Trojan programming, trig-
ger, and payload. The hardware programming powers on the Trojan; trigger signals use the mod-
ified hardware to carry out the payload. We consider two different payloads regarding leaking
information and the kill switch. The following sections provide experimental results to demon-
strate them.
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PSEUDOCODE 1: E-fuse Activation & Sensing

1: procedure

2 r0 € E-fuse status register > Programmed E-fuse: r0 = 1
3 r1,r2 C General purpose registers > For comparison
4 // initialization

5: r0 <0

6 rl «x > x € random unsigned integer
7 r2 < x

8 while r0 == 0 do

9 Compare r1, r2 > Raise equal operand flag
10: Read r0 > Use custom instruction to read r0
11: end while

12: end procedure

6.2.1 Implementation of Hardware Programming. The implementation process starts with the
selection of victim wires that can be controlled by the Soft-HaT program. Since instructions are
executed in a processor, wires in the processor provide decent controllability. The synthesized
OR1200 processor has approximately 3,000 wires. Thus, the processor alone provides enough po-
tential candidates for victim wires. Moreover, the analog circuitry for blowing the E-fuse requires
a series of pulses. Thus, the Soft-HaT program needs to make sure that it can control the victim
wire and generate the required pulses. Several wires, such as “operand equal,” “greater than,” and
“less than flags,” from the arithmetic logic operation unit of the processor meet the pulse train
generation capability, and they are easily controllable from the Soft-HaT program. For the sake of
demonstration, we choose the “operand equal” flag signal as the victim wire to provide pulses to
the E-fuse. Note that attackers can choose wires from other IP blocks and consider low switch-
ing activity of the wire for victim wire selection to add more obfuscation on malicious E-fuse
placement.

Pseudocode 1 presents the pseudo program for pulse signal generation to blow the E-fuse. Here,
two equal operands stored in r1 and r2 registers are compared to set the value of the “equal
operand” flag to logic “1.” In the while loop, we check for E-fuse status from a register r0. Thus,
the “operand equal” flag alternatively switches from logic “0” to logic “1” until the E-fuse is burnt.
Since the E-fuse makes permanent changes in the hardware, modified logic is expected to last
throughout the lifetime of the IC.

One of the challenging parts in this design is to read the status of the E-fuse since SoC does not
provide direct access to an internal wire of hardware. An intelligent design process is required in
this regard to avoid any change in regular functionality. In this demonstration, we take advantage
of undefined logic in the OR1200 architecture to check the status of the E-fuse. The OR1200 archi-
tecture leaves few arithmetic instructions as unused. We used one of the unused instructions and
modified the logic design to load the status of the E-fuse in a register. Attackers can also omit the
step of reading the E-fuse status and try to run the payload directly to minimize the design effort.

Figure 8 illustrates the activation signal generated in the “operand equal” flag in FPGA imple-
mentation. We found that frequency of the activation signal is five times lower than the clock signal
as the comparison operation takes five cycles in the OR1200 architecture and analog circuitry is
designed accordingly. If necessary, the program can be designed to obtain other frequencies by
inserting delay slots using a “no operation” instruction. Thus, the proposed method leads to fre-
quency adjustment via a software program that adds more obscurity in Trojan design and provides
a favorable condition to avoid the regular test and functional verification.
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Fig. 8. Observation of the trigger wire in OrpSoC implemented in Virtex-7 FPGA. Here, flag refers to the
“operand equal” flag, opcode 2’b00 means comparison, and 2’b11 represents reading r0.

address 0x0010a000: Oxffeeddcc
address 0x0010a004: 0xbbaa9988

address 0x0010a008: 0x77665544
address 0x0010a004: 0x33221100

Fig. 9. Reading protected memory using Soft-HaT attack.

PSEUDOCODE 2: Trigger Pattern Generation

1: procedure UNAUTHORIZED MEMORY ACCESS
2 Check trigger status

3 if trigger is activated then
4: override MMU security protection
5: disable data MMU
6 end if

7 print value of desired memory
8: end procedure

6.3 Implementation of the Soft-HaT Trigger

One of the main advantages of Soft-HaT is that a Trojan trigger has no effect on IC functionality
until the Trojan becomes live. Thus, the Trojan trigger signals do not necessarily have to be rare,
unlike the traditional methods, and leave plenty of choices to the attacker. For the sake of demon-
stration, we used “ALU opcode” that is not defined (illegal) in the OR1200 architecture to generate
a trigger. In general, the architecture raises an “exception interrupt” in case of an illegal opcode.
Our software programming step changes an illegal “ALU opcode” to a legal instruction and allows
us to mount the attack.

6.4 Implementation of Payload I: Leaking Privileged Memory

We assume that Soft-HaT modifies hardware and allows us to run the trigger and mount the attack.
The logic block of the MMU unit of the OR1200 processor has been modified to demonstrate the
payload. The corresponding pseudocode to leak memory is given in Pseudocode 2. We started by
executing a trigger instruction that modifies the MMU memory protection logic. Next, we send
“load” instructions to read the privileged memory contents. The contents are read via a UART
module connected to a desktop. We find that it allows to read memory contents that are only
accessible in supervisor mode. Figure 9 shows the random memory contents that have been read
from memory. Memory addresses 0x00010a000—08 are privileged memory and only accessible in
supervisor mode. This demonstration shows that the Trojan can cause a significant memory leak.
A similar approach can also leak memory from other applications.
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Fig. 10. Behavior of the program counter after kill switch activation.

PSEUDOCODE 3: Kill Switch Implementation

1: procedure KILL SWITCH INSTRUCTIONS

2 // Program E-fuse to change pc_stall permanently

3 if kill_value then

4: pc_stall « 0

5: end if

6 // Restrict program counter to boot address

7 if pc_stall == 0 then

8: pc_reg « boot_address

9: end if
10: end procedure

6.5 Implementation of Payload II: Kill Switch

We implemented program counter deactivation as a kill switch in OrpSoC. The pseudocode added
to CPU hardware logic is given in Pseudocode 3. Here, the kill value is designed by an attacker
to perform hardware programming. We send the kill, 4, to the SoC to deactivate it. As we have
mentioned before that FPGA does not allow E-fuse programming in the logic block, we cannot
make a permanent change in this case. However, we store that value using a logic call pcg;qp;.
Pseudocode shows that pcg;,;; mimics the E-fuse behavior and make permanent changes in the
program counter register. In this implementation, the program counter is stuck at the boot ad-
dress of 32’h00001004 after hardware modification. The behavior of the kill switch is presented in
Figure 10, showing that the program counter does not increase with time.

7 ANALYSIS OF STEALTHINESS

In this section, we present why traditional testing and verification techniques, as well as the pre-
viously proposed Trojan detection and prevention mechanisms, are not capable of detecting Soft-
HaT. Moreover, as discussed in Section 4.3, the Trojan activation, trigger, and sensor circuits in our
proposed architecture are untestable by the currently employed testing techniques and therefore
itis inherently stealthier than the previously proposed Trojan designs. The stealthiness of Soft-HaT
is examined with the following detection techniques.

7.1 Improbability of Accidental Activation and Detection

Soft-HaT powers on when an attacker provides the Soft-HaT program that generates the required
number of clocking pulses that burn the E-fuse. As shown in Equation (1), the probability of gener-
ating the required number of clock pulses to burn the E-fuse through clock glitching or through a
functional is extremely small (in the range of 27%4%°) for a 32-bit system. Some power side-channel-
based Trojan detection techniques [19] rely on partial activation of the Trojan for detection. We
develop an analytical expression to demonstrate that the power consumption of Soft-HAT due
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to few clock pulses generated by accidental clock glitching or functional testing is negligible and
cannot be detected by power side-channel-based Trojan detection techniques. Since the program-
ming circuit (charge pump) is the largest portion of Soft-HaT and has parasitic components, we
focus mainly on it for power analysis. The dynamic power of the programming circuit changes
with frequency. For the sake of simplicity, the N-stage charge pump is modeled as a voltage source
with an open-circuit output voltage ideally equal to (N + 1)Vpp and an equivalent (series) output
resistance R,,; = N/ f2C following the work of Baderna et al. [5]. The dynamic loss is

den = kleCparV[Z)D» (2)

where k; is a technology- and topology-dependent coefficient, C,q, is the total parasitic capaci-
tance, and f is frequency of the pulse generated by the Soft-HaT program. The parameter Cp,,
consists of the top plate parasitic capacitance (Cm, Cal, Ca2) and the capacitance of the MOS
switches. For a voltage doubler depicted in Figure 3, MOS switch capacitance is the sum of the
gate capacitor of NC#, the source-bulk capacitor of pre-charge NC, and gate and source-bulk ca-
pacitors of the PMOS pass transistors P and P#, respectively.

In a sub-micron process, the parasitic capacitance is in the order of picofarads [32]. A few acci-
dental clock pulses during the testing period correspond to very low frequency (in order of hertz).
Therefore, the average dynamic power consumed by Soft-HaT due to accidental clock pulses is
negligible as compared to the overall system (around 12 orders of magnitude smaller; see Table 4).
Therefore, power side-channel-based Trojan detection techniques [19] would be incapable of de-
tecting Soft-HaT.

As shown in Equation (1), the probability of generating the required number of clock pulses to
burn the E-fuse through clock glitching or through functional testing is extremely small (in the
range of 27%4%) for a 32-bit system. Activation of Soft-HAT using structural test pattern is not
feasible for the following reasons:

e The scan clock operates at much lower frequency than the frequency of the clock signal
required to activate the E-fuse.

e Scan patterns generated from the automatic test pattern generator (ATPG) will never pro-
vide the repeating activation pulses required to burn the E-fuse.

e The structural pattern generated during the “design for testability” (DFT) stage has no
knowledge of the Soft-HaT design that is added by the foundry at the fabrication phase.

Similarly, built-in self-test (BIST)-based techniques that are typically used for testing memory
elements (SRAM, DRAM, etc.) would not be effective in detecting Soft-Hat. BIST only covers the
nets that exist in the original design. Soft-HaT is inserted after BIST incorporation, and as a result,
BIST cannot cover the nets and the E-fuses that are going to be inserted by the adversary.

7.2 R2D2 Trojan Detection Technique

The R2D2 detection mechanism analyzes a set of software-controllable registers or memory-
related signals for successive toggling events to detect a suspicious event and the possible presence
of a Trojan. The authors claim that their proposed technique is capable of detecting the A2 Trojan
by analyzing the unusual toggling events in the divide-by-zero flag. However, this technique will
not work for our proposed Trojan. As mentioned in Section 4.2, Soft-HaT is activated by a typ-
ical program that possesses no malicious properties. The programming and the trigger circuit is
inserted in the design by the adversary (e.g., a rogue foundry after the R2D2 mechanism is added
by the design house). Therefore, there is no possibility that R2D2 will cover wires of the E-fuse
activation circuit.
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7.3 Pre-Silicon Trojan Detection

Multiple pre-silicon Trojan detection techniques have been proposed that try to detect the Trojan
in the design stage. These techniques range from code coverage [38] to HDL analysis [48], rare
node identification [49, 56], finite state machine extraction [39], formal verification [15], and in-
formation flow tracking techniques [37]. These are typically developed to detect Trojans inserted
by third-party IP vendors and requires access to the RTL or gate-level design. Note that in our
proposed approach, the adversary inserts the Trojan in the layout shipped to the foundry, and
therefore the design house does not have access to the Trojan-inserted design. Thus, none of the
proposed techniques are capable of detecting our proposed Trojan.

7.4 Post-Silicon Trojan Detection

The post-silicon Trojan detention techniques can be broadly classified into functional verification
tests and side-channel analysis. Traditional functional or structural testing for finding defects or
bugs are not suited for Trojan detection [60]. Banga and Hsiao [7] and Chakraborty et al. [13]
developed test pattern generation methods to trigger such rarely activated nets to improve the
possibility of detecting Trojans. However, in our proposed technique, the design house does not
know the programming or trigger circuit inserted by the adversary, and therefore these techniques
cannot be applied to any wires of our Trojan circuit.

7.5 Side-Channel-Based Trojan Detection

Side-channel-based Trojan detection techniques rely on identifying the Trojan’s effect on side-
channel parameters such as leakage current [2], power [3], electromagnetic (EM) radiation [52],
or delay [23] to detect the presence of a Trojan. Although these techniques generally do not re-
quire the Trojan to be completely activated, they require a golden reference (Trojan-free chip) to
generate a golden side-channel profile or signature. Note that Soft-HaT is inserted at the fabrica-
tion stage, and therefore no golden chip or layout is available. He et al. [17] proposed to use an
RTL design to model a design’s golden EM signature and therefore do not require a golden chip
or layout. However, Soft-HaT is introduced in the design along with analog circuitry that cannot
be modeled with an RTL design available to the defender, and thus this technique cannot detect
Soft-HaT. Hoque et al. [19] proposed a self-referencing-based technique that does not require a
golden design but requires a Trojan-infected design to traverse through one or more Trojan states
to create a difference in the power signature. However, Soft-HaT does not possess any states as-
sociated with Trojans, and therefore this technique also will not work on Soft-HaT. Park et al.
[43] proposed to use the power signature of a malware program for malware detection. Soft-HaT
is triggered by a typical program that possesses no malicious properties and therefore is not de-
tectable by Park et al. [43]. Because of the presence of the E-fuse, and programming and sensing
circuits, some extra resistance and capacitance are added to the pull-down path of the original
inverter circuit (shown in the upper dotted box in Figure 5). The E-fuse exhibits around 50 ohms
of resistance [29], and capacitances are in the range of tens of femtofarads [21]. This extra delay
is very small (in the range of tens of picoseconds). Since this block (in Figure 5) will be part of a
circuit path with other gates, the extra delay will be masked and essentially indistinguishable from
process variations, power noise, crosstalk, and so on. Now, modern processors and SoCs operate
at a few gigahertz frequency (a time period of nanoseconds). Therefore, the change in delay with
respect to the time period is negligible. Moreover, in a real chip, there are millions of circuit paths,
and hence an exhaustive path delay fault is impractical [28]. In addition, detection by transition
delay fault (TDF) requires the delay to be large enough to mimic a stuck-at fault. Therefore, a delay
test will be unable to detect the Trojan for all practical purposes.
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7.6 Runtime Trojan Detection

The runtime Trojan detection mechanisms typically rely on a concurrent error detection mech-
anism to detect a Trojan inserted by untrusted 3PIP vendors. They assume that the comparison
circuitry that detects any mismatch between the redundant modules indicates tampering [45].
However, in our case, the adversary, such as a rogue foundry, can tamper with the comparison
circuitry. As a result, the comparison circuitry cannot identify the malicious modification created
by Soft-HaT. Moreover, the adversary can insert Soft-HaT into the comparison circuit itself and
disable the concurrent error detection mechanism when the Trojan is triggered.

7.7 Design for Trust

These Trojan defense techniques attempt to thwart the Trojan insertion by the adversary. An ex-
ample of such techniques is the built-in self-authentication (BISA) approach that fills all empty
spaces in the design with functional filler cells [61]. However, this approach does not take into
account two aspects of modern IC design flow. First, many hard macros, such as SRAM memory
blocks, TRNG, and some analog circuitry, are integrated into the modern SoC by the foundry.
Therefore, an untrusted foundry has unlimited access to insert Soft-HAT in any of these hard
macros. Second, engineering change order (ECO) cells, such as functional unused gates, are inten-
tionally added in almost all SoCs for fixing timing violation, bugs, or functionality [41]. ECO cells
cannot be protected by BISA, as these cells cannot be replaced by BISA cells.

8 CONCLUSION AND FUTURE WORK

This article discussed a stealthy hardware Trojan, Soft-HaT, based on hardware programming to
change the computing logic when ICs are deployed in the field. Since Soft-HaT becomes live in the
field, it is not testable in post-fabrication. We utilized Soft-HaT to perform an attack on an MMU
that provided access to restricted memory. We also implemented a kill switch using Soft-HaT,
which can instantly disable a system permanently. These approaches have been demonstrated in
Virtex-7 FPGA. Since the functionality of the E-fuse programming circuit has only been verified via
simulation and FPGA emulation, we plan to fabricate and verify Soft-HaT on an ASIC chip that
allows implementation of analog circuitry and E-fuse programming. Further, we assumed that
physical inspections would not detect Soft-HaT given the complexity and size of the modern ICs.
In future work, we will verify this assumption using SEM imaging techniques to identify Soft-HaT
in the fabricated ASIC chip.
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