IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Qihang Shi

Abstract—Hardware Trojan insertion and intellectual property
(IP) theft are two major concerns when dealing with untrusted
foundries. Most existing mitigation techniques are limited in
protecting against both vulnerabilities. Split manufacturing is
designed to stop IP piracy and integrated circuit (IC) cloning,
but it fails at preventing untargeted hardware Trojan insertion
and incurs significant overheads when high level of security is
demanded. Built-in self-authentication (BISA) is a low-cost tech-
nique for preventing and detecting hardware Trojan insertion,
but is vulnerable to IP piracy, IC cloning, or redesign attacks,

Obfuscated Built-In Self-Authentication With
Secure and Efficient Wire-Lifting
, Mark M. Tehranipoor, and Domenic Forte
W
e S

especially on original circuitry. In this paper, we propose an
obfuscated BISA technique that combines and optimizes both
the techniques so that they complement and improve security
against both vulnerabilities, while at the same time minimizing
design overheads to the extent that the proposed method does not
incur prohibitive cost for designs of industrial-level sophistica-
tion. Our evaluation on advanced encryption standard and data
encryption standard cores shows that the proposed technique can
reach security levels more than two times higher, satisfying all
existing layout-based security metrics, while reducing overheads
from hundreds of percents to less than 13% in power, 5% in
delay, and zero percent in area, as compared to best reported
performance in existing techniques.

Index Terms—CADCAM, design tools, information security.

I. INTRODUCTION

HANGING economic trends have resulted in a global-

ized integrated circuit (IC) supply chain. It is no longer
economically feasible for most IC producers to own foundries
and fabricate ICs in-house. For the majority of the industry,
fabrication is now being performed by contracted foundries
and outside the control of original intellectual property (IP)
owners. IP owners enjoy reduced cost and state-of-art fab-
rication technologies in off-shore fabrication, at the cost of
reduced control and, therefore, reduced trust in the manufac-
turing process. This has raised serious concerns on whether
trust between an IP owner and such fabs can be established [1].
An untrusted foundry with malicious intent could conduct a
number of attacks, including IP piracy [2], IC cloning and
overproduction [3], [4], and hardware Trojan insertion [5]. For

Manuscript received September 25, 2017; revised February 7, 2018 and
May 10, 2018; accepted July 16, 2018. Date of publication October 19, 2018;
date of current version October 16, 2019. This work was supported in part by
the Cisco Systems, Inc., and in part by NSF under Grant CNS 1651701. This
paper was recommended by Associate Editor W. Yu. (Corresponding author:
Qihang Shi.)

The authors are with ECE Department, University of Florida, Gainesville,
FL 32611 USA (e-mail: gihang.shi@ufl.edu; tehranipoor@ece.ufl.edu;
dforte @ece.ufl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2877012

Metal 4 — Metal 3 Via

Metal 3 — Metal 2 Via '

Fig. 1. Sample split manufacturing arrangement. It assumes split is made
between Metal-2 and Metal-1 layers.

off-shore fabrication to stay secure, capability of the IP owner
to prevent such attacks must be thoroughly substantiated.

Split manufacturing has been proposed [6] to address the
threat of IP piracy, cloning, and overproduction. This tech-
nique proposes that an untrusted foundry manufactures the
front-end-of-line (FEOL) part of the IC, and then ships it to a
trusted foundry to deposit back-end-of-line (BEOL) part onto
it (see Fig. 1). By this arrangement, the untrusted foundry
denied the complete information of the layout, and therefore,
prevented from stealing IP information, or committing attacks
that require knowledge of the complete design.

Techniques against hardware Trojan insertion exist in two
categories characterized by how they address the issue: the
first category focuses on detecting Trojans, either by func-
tional verification, side-channel signal analysis, or by new
front-end design techniques, such as design-for-trust [7]-[15].
Techniques in this category detect existence of hardware
Trojans by generating a signature of the circuit under test
(CUT), then classifying the CUT with this signature. To per-
form classification, they require a golden model, i.e., signature
of a copy of the same circuit that is known to be free from
hardware Trojans. Unfortunately, it remains doubtful whether
golden models can be acquired for real world applications.
The second category, Trojan prevention techniques focuses
on preventing hardware Trojans from being inserted into a
design, and do not have to deal with process variation and
need for golden ICs. Built-in self-authentication (BISA) is
the first proposed technique to prevent hardware Trojan inser-
tion in circuit layout and mask [16], [17]. By occupying all
available spaces for Trojan insertion and detecting malicious
removal through built-in self test (BIST), BISA is able to
deter hardware Trojan insertion without the requirement of
golden models and free from classification errors introduced
by process variation. Both split manufacturing and BISA are
effective in addressing the threat they are designed to counter.

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2662-7808
https://orcid.org/0000-0002-2794-7320

1982

However, problems remain with both techniques. To begin
with, techniques against IP piracy do not usually consider the
threat of hardware Trojan insertion, and neither do techniques
against hardware Trojan insertion (such as BISA) consider IP
theft, despite both attacks sharing the same adversary. In all
likelihood, untrusted foundries will likely try all attacks in
their arsenal, and IP owners will desire an overall solution
that will secure his design against all of them. Therefore, a
complete security solution to address the threat of untrusted
foundry needs to consider all possible attacks, and both split
manufacturing and BISA are limited on their own.

In this paper, we propose a new approach to an earlier
proposed technique called obfuscated BISA (OBISA) that
combines both techniques [18]. The proposed technique not
only: 1) prevents weakness from either kind of attacks; 2) is
secure against attacks specific to BISA; and 3) is more secure
in terms of proposed metrics of split manufacturing security
but also: 1) has drastically reduced time complexity at gener-
ating wire lifting solutions; 2) has drastically reduced design
overheads of the implemented design; and 3) provides parti-
tioning techniques to accommodate large designs, so that the
presented technique can be expected to be implemented on
industrial-size designs, while keeping overheads in both design
process and design itself manageable.

The rest of this paper is organized as follows. Section II
provides a survey of existing research related to split manufac-
turing security and BISA, elaborates on weaknesses of known
techniques, and proposes ways to address these weaknesses
using OBISA, before providing a detailed list of contribu-
tions claimed by the OBISA technique. Section III presents
the proposed OBISA technique in terms of its application
flow, how it integrates with existing back-end design flow,
and how each claimed contribution is realized. Section IV
presents experimental evaluation of the proposed OBISA tech-
nique in terms of its security and overheads. Finally, Section V
concludes this paper.

II. BACKGROUND
A. Threat Model

The proposed technique is intended to address threats posed
by an untrusted foundry against split manufacturing. These
threats include malicious inclusion (e.g., hardware Trojans), as
well as all possible attacks if the untrusted foundry succeeds in
compromises security of split manufacturing by reverse engi-
neering BEOL connections denied to him. In other words, the
proposed technique is intended to be secure against Trojan
insertion and as a split manufacturing technique. Since the
proposed technique intends to achieve this goal by combin-
ing BISA [16], [17] with wire lifting [19], it also inherits
assumptions of both techniques, e.g., the untrusted foundry
is assumed to be able to access functional netlist as assumed
in [19].! Note that this quality of remaining secure even when
the netlist becomes compromised does not make the technique
insecure when the netlist becomes the goal of the attack.

B. Built-In Self-Authentication

BISA prevents hardware Trojan insertion by exhausting one
resource essential to it: white spaces. Normally, during the

1This, however, does NOT assume the untrusted foundry to also have access
to BISA circuitry, as latter is only known well into the layout design, therefore
knowledge of BISA netlist would also mean knowledge of the layout.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

BISA circuit under test

5 Shift Out
Block 1
! Block 2 M

)
N N, Block 3 M

Shift I

TPG
ORA

Y

Y
L
F
S
R

> Block M

I
S
R
T T

Fig. 2. Structure of BISA.

placement step of the back-end design of the circuit, gates in
the circuit are placed at optimized locations based on density
and routability [20]. This leaves spaces in the layout that are
not filled with standard cells. If they are replaced by Trojan
gates, no performance loss significant enough to raise sus-
picion will likely be incurred, since Trojan gates are rarely
triggered as well.

1) BISA Architecture: All inserted BISA cells are con-
nected into tree-like structures to form a BIST circuitry, so
that they could be tested to verify no BISA cell has been
removed. Removal of its member cells will lead to a BIST
failure, so that no attempt to make room for hardware Trojans
will evade detection. As shown in Fig. 2, BISA consists of
three parts: 1) the BISA CUT; 2) the test pattern generator
(TPG); and 3) the output response analyzer (ORA). In order
to increase its stuck-at fault test coverage, the BISA circuit is
divided into a number of smaller combinational logic blocks,
called BISA blocks shown in Fig. 2. The TPG generates test
vectors that are shared by all BISA blocks. The ORA will
process the outputs of all BISA blocks and generate a sig-
nature. TPG has been implemented with linear feedback shift
register while ORA has been implemented with multiple input
signature register in prior work [17].

The main advantage of BISA over other techniques with
similar objectives is that it has no golden chip requirement.
Since BISA relies on logic testing, process variation is not a
factor either, as compared to Trojan detection techniques based
on side-channel analysis. As an additional advantage, impact
of BISA on the original design in terms of area and power is
also negligible [16], [17]. This is due to the fact that BISA
only occupy spaces originally occupied by decoupling filler
cells, and do not become activated through out life of the IC
except once after fabrication by the IP owner to verify the IC
is free from malicious insertion by the untrusted foundry.

2) Attacks on BISA: The attack most likely to succeed
against BISA is the so-called redesign attack. This attack
replaces original circuitry with smaller functionally equiva-
lent circuitry to make room for Trojan insertion. Prevention
of such an attack would require anticipation of all possible
custom cell designs that are functionally equivalent to any
combination of BISA cells. That is, not likely feasible except
for very small BISA circuitry. Due to the existence of resizing
attack, all BISA cells have to be of the smallest variant in area
among standard cells of the same function, which might make
it easier for the attacker to identify them.

C. Split Manufacturing Security and Limitations

1) Prior Works on Split Manufacturing Security: The prior
work in this field [19], [21], [22] is motivated by one major

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

objective: to establish a sound metric of security for designs
fabricated using various split manufacturing methods. Most
researchers attack the problem from a layout point of view.
Publications in this category often examine irregularities in
the layout and theorize how they can be used by a hypothet-
ical attacker. Rajendran er al. [21] proposed proximity attack,
which simulates an attacker who makes educated guesses on
BEOL connections of open input/output pins in FEOL. This
idea of proximity attack has received further development in
the later publications. Wang et al. [23] proposed to also con-
sider load capacitance limitations as well as the direction of
dangling wires, while Magafia et al. [24] discussed more defi-
nitions of proximity based on known router behaviors. Another
study [22] also uses layout information, but instead of perform-
ing hypothetical attacks, it seeks to define objective measures
of the layout that might become useful to exploit.

Security metrics based on layout information are available
to designers through layout editor tools, and have seen recent
application [25], [26]. Unfortunately, problems remain. First,
since no attack has been reported to have successfully recon-
structed BEOL connection from FEOL clues, no hypothetical
attacks and objective metrics are more convincing than the
others. Further, proposed metrics themselves do not scale lin-
early with difficulty in any conceivable attack, which makes
it difficult for designers to estimate how much protection is
enough. And finally, when multiple metric values are mea-
sured, it is very difficult to find a way to estimate the relative
importance among them.

Another research [19] evaluates split manufacturing secu-
rity based on graph connectivity of FEOL layout and seeks
to define security with dimensions of the solution space
from which the attacker must pick one correct solution. The
proposed metric operates on directional acyclic graphs (DAGs)
abstracted from both the complete layout (G) and FEOL lay-
out (H) [see Fig. 3(a) for an example]. In the resulting DAG,
gates are represented with vertices, i.e., colored circles in
Fig. 3(a), whose color represents models of each gate; and
nets are abstracted into sets of directional edges, each edge
corresponds to a driving vertex and driven vertex pair [rep-
resented with arrows in Fig. 3(a)]. Then it computes the
number of legal mappings k that maps each gate u; in com-
plete layout graph G to a distinct gate v; in FEOL layout
graph H. This number k is defined as the security of that
gate, and the security of the complete layout is defined as
the lowest k of all gates. In the example shown in Fig. 3,
XOR gates have a security k = 2 but all other gates have
k = 1, therefore the overall security of the circuit remains
at k = 1. This security metric is often referred to using its
letter of choice k as k-security. A greedy algorithm is then
presented to find a minimal subset of wires in the layout
to uplift to BEOL while satisfying minimum security k, an
optimization of split manufacturing security also known as
wire lifting.

The introduction of k-security has two advantages.

1) It is quantifiable, therefore an optimization algorithm
can be designed with k-security as its objective func-
tion to improve the absolute security of the BEOL
connections, instead of simply preventing every known
loopholes.

2) Its definition is not dependent on specific layout,
which makes it compatible with most layout-based
approaches, and secure even when netlist of the design
is compromised [19].

1983

(b)

Fig. 3. Principle of k-security using a full adder as example. (a) Split man-
ufactured full adder, its FEOL graph H, and its complete graph G. (b) Both
mappings of vertices in FEOL graph H to vertices in complete graph G are
legal.

It is also effective against a wide spectrum of threats, owing
to the fact that few attacks are possible without making sense
of what function gates in the layout serves.

However, it is not without weaknesses. Its first disadvan-
tage is its difficulty to compute. k-security definition checks
whether any given FEOL netlist has a security level of k
by checking a property called subgraph isomorphism, which
makes computation of the security level of any wire lifting
solution NP-hard [19]. The proposed wire lifting algorithm
in [19] functions by procedurally checking if lifting another
wire lowers the security level, which makes it exponentially
more complex. This makes it extremely computationally
costly, and even less scalable than typical NP-hard algorithms.
In addition, the fact that k-security is defined using graph con-
nectivity also results in lack of consideration on any leakage
of information from FEOL layout. This understandably dete-
riorated the performance of the design in every possible way,
as it relies on layout not being optimized for performance
to keep it from leaking security information. Further, need to
boost k makes it necessary to reduce rare gate models, further
restricting design performance.

2) Limitation of Split Manufacturing: Split manufacturing
prevents all attacks that require complete knowledge of the
whole layout, which also includes attacks against BISA, such
as identification of BISA cells. However, not all attacks require
complete knowledge of the whole layout. One example is the
untargeted Trojan insertion [18], a threat discussed in detail

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1984

in [27]. Untargeted hardware Trojans are capable of degrad-
ing the performance and/or reliability of manufactured ICs, or
trigger a denial-of-service in critical control systems [28].

D. Motivation: Implementing BISA With Split Manufacturing

In light of respective limitations of BISA and split manu-
facturing techniques, it makes sense to improve both with the
relative advantage of the other. We, henceforth, term the com-
bined technique OBISA. Enhanced with split manufacturing,
this new technique can also become secure against redesign
attack that BISA was not able to fully prevent, since the
attacker must first identify which existing cells are connected
together before designing a functionally equivalent circuit to
replace these existing cells. Security against redesign attacks
also reduces the necessity of using detection-based anti-Trojan
techniques, and relaxes prior necessity of only using minimum
sized standard cell variant.

Split manufacturing security in OBISA could also bene-
fit from BISA insertion. Additional cells and interconnects
introduced by BISA circuitry can help to homogenize distri-
bution of FEOL features, and proximity-based attacks could
also be foiled by occupying white spaces and compensating
spatial distribution of gate types with BISA cells, which makes
OBISA secure when evaluated with layout-based security met-
rics for split manufacturing as well. To summarize, a combined
OBISA technique improves from both split manufacturing and
BISA in terms of their respective security metrics.

A few options exist to implementing OBISA, depending
on how it implements split manufacturing. In the previous
work [18], an approach with minimal computational cost was
investigated. In that previous work, obfuscation connections
were added between OBISA circuits and functional circuits,
and between OBISA tree-like structures, while optimization
on wire lifting was kept to a minimum. In this paper, we
propose to investigate the opposite scenario, where level of
security is desired, while keeping it viable for industrial level
of integration.

E. Contributions

In addition to theoretical advantages from combining BISA
with wire lifting as was discussed in Section II-D, the
presented technique also claims the following contributions
from evaluations with implementations of the technique.

1) A More Efficient Wire Lifting Algorithm: By propos-
ing a new set of solution constraints that are stronger
than subgraph isomorphic [19], we were able to con-
vert the wire lifting problem into a binary programming
(BP) problem. In doing so, we developed a faster
algorithm to find provably optimal® wire lifting solu-
tions. Experiments on Circuit432 benchmark circuits
yielded 75% to 155% of edges kept at 1.74 x 10°X
to 1.06 x 10°X speed improvements over previous wire
lifting algorithm.

2) A Comprehensive Application Framework on
Partitioning Design Into Manageable Layout: Existing
wire lifting algorithm is limited in size of layout it
can process due to weakness in speed. The proposed
fast wire lifting algorithm increased the size of layout
it can realistically process by one to two orders of

2Optimum defined the same as the one used in [19], i.e., minimizing number
of edges lifted.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

magnitude. In order to ensure applicability to industrial
level of applications, we have investigated ways to
partition designs, and proposed two approaches—one
based on logic hierarchy and the other using simple
geometry—that complement each other to cover all
possible scenarios. Implementation with said partition-
ing techniques proved to be successful on designs up
to 385001 gates large.

3) Pin-Based Definition of Edges: An edge in [19] was
defined based on its driving and driven vertices, which
may not always be unique. With a wire lifting algo-
rithm with greatly reduced time complexity, we are able
to define edges using their driving and driven pins that
eliminates this problem.

4) Cell Model Compensation to Further Improve Security
Level: Unlike BISA, the proposed OBISA allows all
standard cell models to be used. This allows us to
compensate rarely instantiated gate models so that wire
lifting restriction on rare standard gate models can
be relaxed, meanwhile improving maximum achievable
security level k. In doing so, we simultaneously improve
security and reduce overhead.

5) Secure in Terms of Almost All Known Layout-Based
Security Metrics: Instead of scrambling layout at the
cost of prohibitively high performance overheads as was
opted in [19], in this presented approach of OBISA we
perform normal performance-oriented optimizations typ-
ical of conventional design flows, and then show the
resulting layout meets most known layout-based security
metrics.?

III. OBFUSCATED BUILT-IN SELF-AUTHENTICATION
VIA WIRE LIFTING

The proposed approach to implement OBISA is character-
ized by a major departure from its predecessor in [18]: it
uses wire lifting as its principal strategy to ensure split man-
ufacturing security. A most rudimentary implementation is to
simply insert BISA cells, and then solve for a wire lifting
solution. This would allow most benefits by simply combining
BISA with split manufacturing as described in Section II-D.
However, it is possible to further improve OBISA security by
modifying BISA insertion. This is illustrated in an example
shown in Fig. 4.

Consider the full adder as shown in Fig. 3(a), and graph for
its FEOL layout. It is apparently impossible to distinguish the
two XOR gates (represented by vertices shaded in red slash)
in FEOL layout. XOR gates in this full adder have a k = 2
security. If the same can be said for all other gate models, the
FEOL layout would have k = 2 security. Unfortunately, it is
impossible for the full adder to reach k = 2 simply because it
has only one OR gate.

There are a few ways to address this issue. In [19], only
three to seven gate models are allowed during design synthe-
sis, in order to prevent rare gate models from restricting wire
lifting optimization. From a designer’s point of view, however,
this approach seriously impacts the performance of the original
circuitry in area and power. For example, restricting Circuit432
to 3 gate models almost triples total cell count (from 115 to

3With the sole exception of cell-level obfuscation, which is beyond the
scope of wire lifting or BISA, and can be addressed by combining dedicated
obfuscation techniques with the presented technique.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

Netlist Graph of FEOL circuit

——BEOL nets j}3b‘ — et @ g
— D—-’_—E‘“}_
:)E] Wire lifting B
> |—‘E5>' = alone M
:ﬂz FEOL nets
!‘7‘; N
75— OBISA nets 7» k=2
—

et MU&‘ 313} —

FEOL|nets U+) S m— 6> D
— 29—-'f‘:i P
== - e il ﬁ}"jﬁ_ﬂ% {:%
e = - @ OBISA _—

OBISA nets

- @ Original Circuitry

gate vertex Net/wire

Fig. 4. Example: Due to OBISA insertion, wire lifting optimization on the
same full adder can achieve higher k-security rating.

282) and doubles total power and area (1.7725 x 1074 W,
1205.45 pwm? to 3.4955 x 10~* W, 2506.75 um?).

An OBISA technique that performs wire lifting does not
have to submit to this restriction, because the number of
instances of rare gate models can be compensated by insert-
ing OBISA cells. This is illustrated in Fig. 4. In this example,
OBISA cells and interconnects are added, shown in dashed
lines. We can see from the example how the bottleneck in
the previous example—the single OR gate—is compensated
with OBISA cells. In the shown wire lifting example, k = 2
security is reached. If we consider a more extreme solution,
e.g., lifting all wires to BEOL, at maximum the layout could
reach k = 4 security rating.

OBISA insertion does not impact timing, because they are
not connected electrically to the functional circuit. It does
not impact dynamic power because it is not going to be
active during the design’s functional mode. However, if the
functional circuit is very small and number of rarely instanti-
ated standard cell models is large, white spaces in the layout
might not be sufficient. In our experiment, compensating unre-
stricted Circuit432 layout using OBISA insertion to at least
ten cells per model required us to lower layout utilization
to 0.42, which in turn increased area to 1205.45 ,um2 and
power to 1.9549 x 10~* W. This becomes less of a problem
when applied on larger layouts. For example, in one_round
submodule of 256 bit advanced encryption standard (AES)
core, utilization ratio at 0.6 would allow us to compensate to
at least 209 cells per model.

A. Time Complexity of Wire Lifting

Above discussion highlights an obstacle of simply com-
bining BISA with wire lifting: the computational complexity
of wire lifting algorithm, which will suffer exponentially if
additional OBISA gates are added to its consideration.

Determining the security of any wire lifting solution has
time complexity NP-hard. There are solutions with trivial dif-
ficulty to verify: for example, lifting all wires. However, most
of these easy solutions demand a very high percentage of wires
lifted to BEOL, which can cause overhead in timing and loss in
fabrication yield due to increased difficulty of matching more
vias. Therefore, a satisfactory wire lifting algorithm needs
to minimize the number of wires lifted as its optimization
objective.

1985

So far, only one wire lifting algorithm based on this
definition has been proposed [19], and it is based on greedy
algorithm. Simply put, the algorithm (henceforth referred to

s “greedy wire lifting”) starts from a wire lifting solution
E’ where all edges are assumed to have been lifted (i.e., E’
equals to all edges in complete graph E[G]), then iteratively
chooses each edge e among current E’ to add back to FEOL
and checks the resulting security o of lifting solution E'.
If the maximum resulting security s = max{o (E')} > k the
algorithm adds its corresponding edge e, to current solution
E’ and continue searching; otherwise it concludes with current
solution E'. There are two problems with this approach: it is
not efficient, and it is not optimal. It is not optimal because
the adding one wire back to FEOL will very likely preclude at
least one other wire to be added back, and therefore limiting
solutions the algorithm will be able to reach. Hence, the wire
lifting solution available when choosing each wire to add back
will be increasingly more reliant on choices made in earlier
steps. If we choose to investigate all possible branches of the
problem, the time cost will also be exponentially amplified. It
is also not efficient because for each wire to be added back,
security impact of adding each wire back to FEOL wires need
to be determined. If we assume the number of wires kept
to be a fraction of the total number of wires—a relationship
usually holds in experiments—we see the complexity of the
greedy wire lifting algorithm to be exponential with regard
to the total number of wires in the design.

Unless a more efficient wire lifting algorithm is found,
OBISA insertion will exponentially complicate the problem
of wire lifting for exactly the same reason it aids the process.

B. Fast Wire Lifting

We have established two facts: one with mathematical cer-
tainty that even verifying k-security of any given wire lifting
solution is NP-hard and the other with certainty that a wire
lifting OBISA will need a more efficient wire lifting algorithm.
In this section, we demonstrate that our proposed wire lifting
OBISA technique can be efficient while satisfying those two
seemingly prohibitive requirements, by providing an alterna-
tive approach to finding solutions to the wire lifting problem.

1) Binary Programming-Based Wire Lifting Algorithm:
Since the problem of verifying k-security of any given wire
lifting solution cannot be efficient, an efficient solution must
not consist of it. It is easy to see that any wire lifting solutions
can be represented with a n,-bit binary vector, where n, is the
number of edges in the complete graph. If we can find a set of
constraints so that all wire lifting solutions that satisfies said
constraints also satisfy level k security, the problem of finding
optimized wire lifting solutions becomes a BP problem, that is,

Ne
maximize le-
1
subject to Ax <B
where x = (x1,x2, ... ,an)T

Vie(l,...,n},x €{0,1}. (1

Ax < B is the set of constraints we have to find.

Now the problem becomes how to find such a set of con-
straints. k-security is about how many different vertices in
complete graph can be mapped to the same vertex in FEOL
graph. An apparent special case that satisfies this definition
is that if s vertices of the same color (i.e., gates of the same

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1986

Indistinguishable if edges not
directly connected to it
are ignored

| . |— Allow these vertices.

— Eliminate these vertices.

(©

Fig. 5. Edge types and vertex types: How to constrain the wire lifting problem
to make it easier to solve. (a) Uniquely identifying two marked vertices in
two subgraphs will need complete information of all vertices and edges in
each subgraph. (b) Two among many possible subgraphs with more than two
interconnected vertices if vertices are allowed to connect to more than one
edge. (c) Constraint: only allow vertices connected to at most one edge.

model) in FEOL graph are indistinguishable from each other,
we may say that k = s for those s vertices; or more generally,
for each group of vertices in FEOL graph that have a common
identifiable feature that makes them distinct from other vertices
and indistinguishable from among themselves, the security k
of each vertex in this group equals to the number of vertices
in this group s.

Vertices in a DAG have only three identifiable character-
istics: 1) its own color; 2) the edges connected to it and
vertices connected to these edges; and 3) edges as well as
vertices further connected. It is easy to see the third char-
acteristic is most likely computationally the most complex:
a vertex can be connected to a large number of vertices.
This is obviously computationally complex and needs to be
excluded. Satisfying constraints have to function with only
information of the lifting decision on the edge to be decided
only. This forces us to restrict each vertex to keep at most
one edge [shown in Fig. 5(b)], since as shown in Fig. 5(c),
any combination of more than one edge per vertex will allow
existence of subgraphs with more than two interconnected
vertices.

All vertices in a wire lifting solution that satisfies this con-
straint will either be completely isolated (i.e., all edges lifted)
or form a pair with its driving/driven vertex. The two-vertices-
pair scenario has a very useful property for our purpose: that it
is uniquely identified by the edge that connects both vertices,
and the edge can be uniquely identified with only three pieces
of information: 1) the color of the driver vertex; 2) the color
of the driven vertex; and 3) the direction of the edge. Based
on this property, the set of constraints we need Ax < B can
be written as

edge e; is of type ¢;

A xnX =k, aij= otherwise

edge e; is of type ¢;
otherwise

IA
L

B”I,d X"ex

2

—_— O = O =

edge e; is connected
to vertex v; 3)
0 otherwise

Cnvxnex <1, Cij=

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

ne — Dy s, X > k d;j is the number of vertices of

reference i that edge ¢; is
connected to @)

where k is the requested security level; #; is a distinct type of
edge defined using its driver vertex color, its driven vertex
color, and its direction; n;, is the total number of allow-
able edge types (i.e., standard cell models of both driving and
driven cells of an edge); n, 4 is the total number of edge types
to be eliminated; n, is the total number of vertices; n. is the
total number of colors of vertices (i.e., number of standard
cell models that exist in the layout). Equation (2) constrains
edges so that each distinct type of edge either has at least k
indistinguishable instances, or are completely lifted to BEOL.
The latter kind of types of edges can be determined by tal-
lying total number of edges by types in the complete graph
and banning types with fewer than k instances. Equation (3)
constrains the lifting solution to leave at most one edge per
vertex. Equation (4) constrains vertex colors to have at least
k isolated vertices (i.e., vertices with all edges lifted).

One final piece in this puzzle is for the constraints to fit
all possible scenarios. Constraints as shown in (2) and (4)
means at least one solution exists that satisfies all named edge
types have at least k indistinguishable instances, and each color
of vertices to have at least k vertices with all edges lifted.
In reality, desirable solutions do not need to satisfy all these
requirements. Some edge types that have more than k instances
in the complete graph may have to be all lifted to ensure all
others having at least k instances, or some colors of vertices
may all keep an edge, leaving no need to lift all edges of at
least k vertices of each of these colors.

To adapt our constraints to these different possible scenar-
i0s, we convert affected constraints into so-called either-or
constraints by introducing a few extra variables y and z to
choose between the alternatives. The complete description of
the BP problem therefore becomes (5). This is the complete
set of constraints for the BP-based approach of fast wire lifting

Ne
maximize Zx,-
subject to 1
Ap, xnX =k — My
A yxnX <My —1)
Bn,,dxnex <0
Cn‘,xnex <1
ne —Dyxn,X > k+M(z — 1)
ne — Dy, X < Mz
Vi, xi, yi, zi € {0, 1}

where x = (x1,x0, ..., xne)T
T
y = (YIa)’Za s a}’nm)
T
z2=1(21,22, -+ +»2Zn,)
a b — 1 edge ¢ is of type t;
LI Pl 0 otherwise
1 edge e;j is connected
Cij= to vertex v;

0 otherwise
d; j is the number of vertices of reference
i that edge e; is connected to. (5)

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

2) Pin-Based Definition of Edges: The prior definition
based on cells impacts both security and/or difficulty of imple-
mentation in a real industrial design. First, it disregards the
actual difference between pins. In a cell-based definition, two
edges might both be leading from an inverter to an AND ver-
tex, while in the netlist one wire is connected to the A pin
and the other is connected to the B pin of their respective
AND gate. This indicates actual number of indistinguishable
wires may be much lower than the algorithm reports, which
constitutes a leak of information.

Another problem is with multiple output cells, a most com-
mon example is flip-flops. Typical flip-flops offer two outputs,
Q and QN, where one is the inverted signal of the other. A cell-
based definition will be unable to distinguish different wires
in this scenario and treat all of them as the same edge.

It is possible to modify the greedy wire lifting algorithm to
work with pin-based definitions, but this will further exponen-
tially increase already extremely long processing time. On the
other hand, the proposed BP-based wire lifting algorithm can
accommodate this with superior processing speed. Therefore,
on top of being faster, provably optimal, the proposed BP-
based algorithm is also free from a leak of information and
can be applied to designs that uses gates with multiple outputs.

C. Implementation Flow

The proposed BP-based approach of wire lifting greatly alle-
viates the time complexity of wire lifting solution generation.
However, BP remains an NP-complete problem. Therefore,
implementation of proposed OBISA technique needs to pro-
vide solution to two specific problems.

1) Implementing the proposed OBISA technique on a

reasonably sized layout.

2) Converting any given design to layouts of the first kind.
For the first problem, we show a layout design flow modified
from the original BISA implementation flow in Section III-C1;
for the second problem, we propose to divide the layout along
logic module boundaries and apply OBISA flow on each logic
modules, shown in Section III-C2; in corner cases where this
is not realistic or efficient, we present an alternative approach
where the layout is divided using geometrical boundaries, and
shown in Section III-C3.

1) Implementation Flow on Reasonably Sized Layout: The
proposed OBISA flow is shown in Fig. 6. Boxes shaded with
blue slashes represent procedures already present in BISA
flow, while boxes shaded with red crosses represent new pro-
cedures in this approach. Our need for security requires gate
type compensation as well as random placement for maximal
obfuscation. Cells of the rare gate models are placed before
others to compensate gate model distribution. The locations of
these gates are chosen randomly to reduce possible leakage of
information in FEOL layout; for the same purpose, remaining
white spaces are filled with BISA cells with random gate mod-
els. After that, classic BISA cell routing is performed. Before
wire routing, an optimized wire lifting solution is found for
the complete layout, using the BP-based technique we have
discussed in Section III-B1. The rest of the design flow does
not differ from conventional back-end design flow.

One sample result of this procedure is shown in Fig. 7. In
this example, Circuit432 benchmark from ISCAS’85 is used,
and split is performed between M3 and M4 layers. The layout
without wire lifting shown in Fig. 7(a) shows most wires in
purple (e.g., wires connecting core area to virtual pins), which
is the color assigned to M2 layer, while the layout with k = 46

1987

7 Unused Spaé 7 Compensation Cell

Netlist % ~ Identification 2 Placement
écmcnf Randomized BISA
A, Cell Placement
o, - . X
% . 7 7 :Choose Wires to lift
G Cgl()s:(hTriee ZBISA Cell Routing’ii to BEOL for
i i Obfuscation
GDSI -« Signal Rou Constrain routing (08, 8500 FEOL wireq
%2 BEOL :
74
Procedure present in New flow
classic BISA flow .
N Classic BISA
flow
Procedure present in ~ Both flow
new flow

Fig. 6. Implementation flow of the proposed OBISA technique on a
reasonably sized layout.

(a) (b)

Fig. 7. Circuit432 layout, with and without wire lifting optimization.
(a) Circuit432 layout without wire lifting optimization. (b) Circuit432 layout
using k = 46 wire lifting solution.

wire lifting shown in Fig. 7(b) shows most wires in green (e.g.,
wires connecting core area to virtual pins), which is the color
assigned to M4 layer. Compared to similar layout presented
in [19], layout in Fig. 7(b) does not appear to have significantly
more congestion than layout in Fig. 7(a), likely due to the fact
that placement optimization is not done blindly and therefore
does not suffer from wire length overhead likely caused by an
under-optimized placement.

2) Hierarchy-Based Partitioning: Designs larger than tens
of thousands of gates likely need to be partitioned for wire
lifting to be efficient. In this section, we illustrate the reuse of
partitions already existing in a hierarchical layout design flow
by simply performing OBISA insertion and wire lifting to each
logic modules it instantiates. A flow diagram of the proposed
hierarchy-based partitioning method is shown in Fig. 8. In
order to manage the amount of computation needed for wire
lifting, designs are first partitioned into hard macros (Fig. 8).
If recurring circuit subgraphs is discovered, they can also be
extracted into logic modules and follow the same routine.

3) Geometry-Based Partitioning: In addition to size, real
industrial-scale designs pose unique challenges to efficient

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1988

. Toplevel
Netlist

Netlist of
Modules

Fig. 8. Hierarchical wire lifting: apply OBISA flow to each logic module,
then integrate into final GDSII.

_| Toplevel
layout

Layout
= ofhard
macros/

Design
Netlist

@ ®

Fig. 9. Layout partitioning for simplified wire lifting. (a) Example: parti-
tioned toplevel of a DES core geometrically. (b) Partitions updated to include
fringe cells.

wire lifting which require further attention. For example, some
of these challenges may include the following.

1) Numbers of instantiations among logic modules differ.
This leads to the need of compensation in gate types
and security levels among nonuniformly instantiated
modules.

2) Some logic modules are consisted of few types of gates.
This leads to need to hide this unique composition with
OBISA cells.

3) Some logic modules can be too large; some other logic
modules may be too small to provide enough white
space.

Some of these challenges can be addressed with clever
applications of constraints and partition rules. For such
challenges the following arrangements are made in our
implementation.

1) Use gate types from other logic modules with more types
of gates for OBISA gate type compensation on logic
modules with fewer types of gates, in order to hide the
standard-cell composition bias present in such modules.

2) Use lower utilization ratio for very small modules to
accommodate OBISA cells.

3) Assign lower security level k for more frequently instan-
tiated modules.

However, it remains a possibility that a logic module may be
too large and too indivisible. To prepare for such eventualities,
we present a simple geometry-based partitioning scheme to
complement hierarchical-based partitioning.

This geometric partitioning simply partitions cells in the
layout into n x n rectangular regions based on their location,
as shown in Fig. 9(a). Wire lifting can then be performed
for each partition with updated security level divided by the
number of partitions.

This method of partition leads to two more questions to
be answered: 1) how to determine the wire lifting solution

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Pl PP

Find connected
>/ fringe cells in othe
partitions

Vosrvrirrreyroerssessi

NS

Cells present | [|

in layout /| Cellsin a 7 W
L_| partition %4/ Solution

~Wire lifti{///

Fig. 10. Flow of partitioned wire lifting.

Rare cells

of wires connecting cells belonging to different partitions and
2) edges that are not rarer than the security level of the mod-
ule may become rarer than that of each partition, whose lifting
should be decided independent from partitions. To address the
first problem, we introduce the concept of fringe cells, defined
as cells belonging to other partitions that are connected to cells
of current partition through edges. They, along with edges con-
necting them to cells in current partition, will be included
when solving wire lifting problem of each partition. If any
edge connecting a fringe cell is kept in any partition, the con-
straint representing that fringe cell in (3) is changed to zero for
all future partitions so that no other edge leading to that cell
will be kept. We term edges featured in the second problem
as rare edges and pulled from the consideration of each par-
tition, and decided globally after solution of all partitions are
found. To avoid solution of each partition and solution of rare
edges from affecting solution of the other, constraints from
(3) and (4) involving rare edges are modified so that no mat-
ter the rare edges are lifted or kept, no cell will have more
than one edges kept, and isolated gate counts of each gate
model will be at least as large as security level of that parti-
tion. Specifically, constraints of cells connected to rare edges
become

1 rare edge ¢; is
connected to vertex v;
0 otherwise

e — Dncrexnex >k+ Rpeex1 (6)

’ ro_
Chexcnx <0, Cij=

where element d; ; of matrix Dy, x,, is the number of vertices
of reference i that edge e; is connected to, nyre (number of rows
of matrix C’,,, . xn,) is the number of vertices connected to rare
edges, ncre (number of rows of matrix Dy, xn,) is the number
of gate models that have vertices connected to rare edges,
and element n; of vector n, 1 is the number of vertices of
gate model i that are connected to rare edges. A diagram that
elaborates on the entire process of partitioned wire lifting is
shown in Fig. 10.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
results to support our claims about the proposed technique, as
well as explore implementation costs in terms of timing, area,
power, and implementation time. Specifically, the following
topics will be discussed.

1) Comparison of processing time and number of wires
kept between by greedy wire lifting algorithm and
proposed BP-based wire lifting algorithm.

2) Comparison of wire lifting performance between cell-
based and pin-based definition of edges.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

TABLE I
NUMBER OF NETS AND GATES OF USED BENCHMARK
CIRCUITS AT RTL STAGE

Benchmark | c432 c880 c1908 c3540
#RTL nets 499 588 766 1,571
#RTL gates | 263 528 733 1,521
Benchmark | ¢5315 | c6288 des aes
#RTL nets | 2,379 | 6,688 | 38,523 | 487,489
#RTL gates | 2,201 | 6,656 | 34,264 | 448,136

3) Evaluation of security of layout protected using
proposed technique, in terms of known layout-based
split manufacturing security metrics.

Demonstration of application on designs of industrial
dimensions and evaluation of design overhead in terms
of area, power, and path delays.

Results presented are collected using following benchmark
circuits: Circuit432 from ISCAS’85 benchmark suite, data
encryption standard (DES) and AES crypto-cores from
www.opencores.org. Additionally, ¢880, c1908, c3540, c5315,
c6288 from ISCAS’85 circuits are processed to investigate
how fast the time complexity climbs as layouts become larger.
Their respective sizes are shown in Table 1. Note that these
figures only reflect the number of gates when their RTL design
are uncompiled, and may reduce depending on leeway given
to synthesizer.

Circuit432 is used to evaluate performance of proposed
technique with regard to existing greedy wire lifting approach
since it was used for this purpose in [19]. The small size
of this benchmark circuit poses a particular challenge to
OBISA insertion, which is not enough white spaces are left
when normal floorplanning density is used, forcing a tradeoff
between area overhead and restriction on number of stan-
dard cell models. To study this limitation, two netlists of
Circuit432 benchmark circuits are synthesized: one where only
three standard cell models are allowed, and one without such
restriction.* DES and AES cores are used in demonstration
of application on designs of large scale and evaluation of
design overhead. For each synthesized netlist, three layouts
are created: 1) Ctrl is the control group where neither OBISA
insertion nor wire lifting is performed; 2) OBISA-Only has
OBISA cell occupying white spaces, but routed normally; and
3) OBISA-Lifted underwent both OBISA cell insertion and
wire lifting.

Proposed BP-based wire lifting algorithm is implemented by
first generating the problem formulation using a script within
the layout editor and then solved with a third-party integer lin-
ear programming solver. The presented results are collected
using Synopsys IC Compiler and/or Design Compiler envi-
ronment for the script, and solved with SCIP Optimization
Suite [29]. MiniSat, as was used in [19], is used as the
Boolean satisfiability problem (SAT) solver in greedy wire
lifting algorithm.

4

~

A. Performance of BP-Based Wire Lifting Algorithm

All comparisons for the purpose of comparing processing
speed were made on Circuit432 benchmark circuit synthe-
sized with only three standard cell models. The definition

4For Circuit432, not restricting standard cell models lead to 12 standard
cells being used.

1989

of edges used in proposed BP-based wire lifting algorithm is
also restricted to cell-based definition. Such restrictions were
made to accommodate the greedy algorithm-based wire lifting.
Both evaluations took place on same server computer featur-
ing 24-core 1995.216 MHz Intel CPUs, 384 GB total memory
at 1333 MHz.

From Table II, we can see even under favorable circum-
stances, the greedy algorithm-based approach is inferior in
terms of processing speed by 1.74e5 to 1.08e6 times. Another
observation is that while the BP-based approach does not
appear particularly affected by requested security level &, high
security level k significantly impacts the time taken by greedy
algorithm-based approach. This is likely resulting from the
difference both approaches approach security levels. For the
BP-based approach, a higher security level means only a larger
integer being used on the right side of the constraint equation;
indeed, higher security level often reduce the number of pos-
sible solutions and improve its speed. On the other hand, the
greedy algorithm-based approach evaluates security level of
each candidate solution by enumerating k different isomorphic
mappings between FEOL and the complete graph, a process
that becomes exponentially more difficult as k increases.

A final row of data in Table II gives the percent of number of
edges kept by the proposed BP-based approach as compared
to greedy algorithm approach. The worst case performance
in this metric gives us 75%, while best case performance
ranges between 155% and 185%. This result has two implica-
tions: 1) for most security levels the performance of BP-based
approach in terms of edges kept is sufficient, seeing that only
in three occasions it yields a worse result than 90%, and one
among them was 89% and 2) the result of greedy approach
in this regard is much more erratic than that of BP-based
approach. This likely results from fact that quality of solutions
produced by BP solver is mathematically guaranteed under
given constraints, while the result of the greedy approach relies
on the quality of its earlier choices of kept edges. Therefore,
it is very much likely, and corroborated by results in Table II,
that wire lifting solutions provided by the greedy approach are
not optimal.

A few more benchmark circuits from ISCAS’85 benchmark
suite have thus been processed, and their processing time are
shown in Table III. In the table, “Total time” refers to the
sum of both generation of BP constraints and the actual time
involved in solving the problem with SCIP solver (i.e., same
as “Time” in Table II), while BP time only refers to the later.
Both results are averages of 100 repetitions. “BP time” is
more relevant here since the time it takes the EDA tool to
retrieve relevant data is unlikely NP-complete. We can see
from the table that item exceeds 1 s between one and two
thousand gates, making layouts of around ten thousand gates
likely upper bound of practicality by extrapolation.

B. Pin-Based Versus Cell-Based Definition of Edges

Shown in Table IV are the number of edges kept n, when
cell-based definition and pin-based definition of edges are
used, as well as evaluated level of security k using pin-based
definition of edges on cell-based wire lifting results. As can
be gathered from the results, not only does n, differ when
the definition of edge is changed, so does the security level.
Since it is imprudent to assume the attacker is unable to dis-
tinguish pins from the layout, we must assume that cell-based

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1990

TABLE 11

COMPARISON OF BP AND GREEDY ALGORITHM-BASED WIRE LIFTING IN TERMS
OF ne KEPT AND TIME CONSUMPTION

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Method k=46 k=32 k=20 k=16 k=12 k=8 k=4
BP n. kept 48 52 96 121 123 123 123
Time (sec) 1.3 1.35 3.65 1.43 1.34 1.68 1.38
Greed n. kept > 26 56 101 78 152 138 165
y Time (day) > 29 12.27 7.34 3.38 16.75 6.05 3.65
Speed improvement | > 1.92e6X | 7.85e5X | 1.74e5X | 2.04e5X | 1.08e6X | 3.11e5X | 2.29e5X
% of edges kept < 185% 93% 95% 155% 81% 89% 75%
TABLE III TABLE V
TiIME CONSUMPTION OF PROPOSED WIRE LIFTING ALGORITHM ON SUCCESS RATE OF PROXIMITY ATTACKS
ISCAS’85 BENCHMARK CIRCUITS WITH OBISA INSERTION
o . OBISA [OBISA
Circuit432 Ctrl | Anonymized ‘ - Ctrl -
Benchmark | 880 | 1908 [¢3540 | c5315 | c6288 B SOy] Lifted [Only | Lifted
Achieved k 10 10 19 20 27 OBISA insertion No Yes No Yes
Lifted No Yes No Yes No No Yes
FEOL edges 10 10 112 252 252 Success 5.38% 0.38% 1.99% | 6.42% | 0.00% | 0.54% | 0.27%
Total edges 323 264 990 1355 | 3475 #Cell 220 220 293 203 | 115 | 309 | 309
: #OBISA cell 0 0 73 73 0 194 194
Total time (sec) | 0.77 | 0.69 2.99 3.49 14.88 Gpen pirs 53 =3 5 50 e o5 e
Total cell count | 248 209 631 864 2140 Hit pairs 5 2 3 23 0 1 2
e key_sel, OBISA
Rc?petltlon 100 DES Core cul Only | Lified
BP time (SCC) 0.06 ‘ 0.07 ‘ 0.11 ‘ 0.77 ‘ 8.28 OBISA insertion No Yes Yes
Lifted No No Yes
Success 0.24% 0.0003% | 0.006%
TABLE 1V #Cell 1608 3801 3801
COMPARISON OF SECURITY AND 1, BETWEEN CELL-BASED AND #OBISA cell 0 2193 2193
PIN-BASED DEFINITION OF EDGES Open pins 5461 13069 | 14957
Hit pairs 9 4 69

Security level k& 46 | 32 | 20 | 16 12 8 4
. kent Cell-based 48 | 52 | 96 | 115 | 119 | 121 | 123
e XeP Pin-based 48|50 | 68 | 105 | 117 | 120 | 123
Security level of cell-based | 14 | 13 | 7 5 2 2 4

definition of edges in fact leads to lower level of security than
requested, as is evidenced by results in Table IV.

Having shown the superiority of pin-based definition of
edges, we switch to pin-based definition of edges for results
shown in the remainder of this section.

C. Security Evaluation With Known Layout-Based Metrics

In this section, we present evaluations of proposed method
in terms of existing layout-based security metrics for split
manufacturing techniques. We are presenting results taken with
the following metrics.

1) Security against proximity attack is evaluated, as well

as NC ratio C(R).

2) Security against identification of functionality through
standard cell composition bias is computed with the
metric of the same name as defined in [22].

The metric of entropy in FEOL standard cells will not
be evaluated as its definition overlaps and contradicts the
principle of definition of security level as number of pos-
sible mappings from FEOL graph to graph of the complete
layout.

1) Security Against Proximity Attack: This metric is stud-
ied by simulating a proximity attack on sample layouts and
calculating percentage of correct guesses. Layouts at vari-
ous stages of implementation in the proposed OBISA flow
were created to evaluate impact of each measure on suc-
cess rate of proximity attack. In the table, only columns
indicate layouts that underwent OBISA insertion only (i.e.,
without wire lifting), while /iffed columns indicate layouts that

underwent both OBISA insertion and wire lifting. Evaluations
on a Circuit432 layout secured with wire lifting solutions
produced with greedy algorithm and place-routed without
BEOL information is also provided in column anonymized
for comparison. In addition to Circuit432, key_sel module of
DES core (to be elaborated in Section IV-D) is also shown
as an example of effect on larger benchmarks. The results are
shown in Table V. A first impression from the results as shown
in Table V is that the number of successful guesses for each
layout can be rather stochastic. Indeed, number of successful
guesses of all layouts are below 5 except for two cases. This
likely results from number of nets that actually had been routed
as short as possible, an understandable objective of placement
optimization. However, the number of open pins in FEOL does
indeed become greatly improved by OBISA cell insertion as
well as wire lifting. This on the other hand is likely more sig-
nificant than possibilities of proximity attack being successful,
as guess-based attack might not be always based on proxim-
ity, but all guess-based attacks are universally more difficult as
number of open pins in FEOL increase. If necessary, number
of open pins in the FEOL can be further increased arbitrarily
by adding dummy vias to BEOL layers that do not lead to
BEOL wires. This is probably made more significant as larger
k is requested—the lifted layout for 3-standard-cell-netlist is
46, much higher than k = 10 for the lifted layout of the
12-standard-cell-netlist.

2) Security Against Netflow Attack: Recently, research
interest has been focused on improving proximity
attack [23], [24], likely due to its potential at producing
valid successful attacks against split fabrication schemes.
Therefore, it makes sense to further verify the security of our
proposed OBISA scheme against a state-of-the-art attack. We
have opted to replicate the netflow attack as described in [23],

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

since the other alternative [24] was performed on routing
benchmarks, whose conversion into hardware description
language would involve quite a lot of effort beyond the scope
of this paper. The netflow attack makes use of four more
hints in addition to geometric proximity, which are: 1) acyclic
combinational logic circuit; 2) load capacitance constraint;
3) directionality of dangling wires; and 4) timing constraint.

Similar to the treatment in [23], we implemented netflow
attack as a set of linear programming problem. Proximity and
directionality of dangling wires were implemented as weights
to potential connections, hint 3 and 5 are implemented as
constraints, and hint 2 was implemented by detecting timing
loops in netlist according to linear programming solution, and
then adding constraints to prohibit connections responsible for
detected timing loops and rerun the attack. Hint of directional-
ity of dangling wires was not implemented as a hard constraint
as was done in [23], because it was discovered that directions
of dangling wires do not always fit the direction of the cor-
rect connection, and excluding all pins in “wrong” direction
may leave the problem with no valid solution. The complete
statement of the linear programming problem is

minimize E Wi jXij

subject to
Cx=>0
Tx >0
x;j < 0if i and j share the same gate
2D % =0
s ijes
J
in,j =1
j=1
I
in,j >0
i=1
Vi, j, xij € {0, 1} (7
where i€ {1,2,...,1},je{l1,2,...,J}

I is total number of unconnected output pins

J is total number of unconnected input pins

Wij = dl'_j — l,',j — ljy,‘

d; j = Euclidean distance between output pin i

and input pin j

lr.; = Length of dangling wire of pin k in same

direction as pin /

¢;j = Available capacitance allowance of
output pin i minus capacitive load of input pin j
t; j = Required arrival time of input pin j minus
arrival time of output pin i

s is a set of all unconnected pins that are found
in a timing loop.

Experiments with thus described netflow attack was per-
formed on c432 circuit. Since c432 circuit did not have
sequential gates, required arrival time of unconnected input
pins were implemented by taking the sum of visible gate

delays between said input pin and output port, then subtracted
with longest path delay of the circuit (serves as substitute

1991

TABLE VI
RESULTS OF NETFLOW ATTACK [23] ON LAYOUTS OF Cc432
BENCHMARK WITH NORMAL PLACEMENT, ANONYMIZED
PLACEMENT, AND OBISA INSERTION

Circuit432 benchmark | Normal | Anonymized | OBISA
#Correct guesses 35 4 10
#Correct guesses 3

in functional circuit
#Edges in BEOL 387
; 264 277
#Functional 973
edges in BEOL
Neighborhood connectedness with varying radii
4 T T T
—<— 3ref_ctrl
a— ¢ ¢ ¢ —#— 3ref_OBISAonly
," 3ref_OBISAlifted
/” —E— 12ref ctrl
/ —<— 12ref_OBISAonly
3F ’/,’ 12ref_OBISAlifted
g/g & & & —#— 3ref_anonymized
Il
|l
f,s/
o /|
[Py |
H
"/
[P ¥
T'¥
\’ '
117 / J
)i
*|
,Efﬁ ¢
Iyl
0 0 50 100 150 200 250 300
R
Fig. 11. NC (C(R)) curve as radii (R) increases, on Circuit432 layouts.

to clock period). Three layouts were created and evaluated:
“Normal” was the control group where layout is placed and
routed normally without human intervention; ‘“Anonymized”
has all its BEOL edges removed prior to placement, then
routed without placement optimization (i.e., as was described
in [19]); “OBISA” is placed normally, then underwent OBISA
insertion flow as described in Fig. 6. For normal layout, uncon-
nected pins were extracted from layout by choosing all routed
shapes of metal layer M3 and above; for the other two layouts,
lifted edges were used.

Results from this evaluation are shown in Table VI. It can
be gathered from the demonstrated results that OBISA is
slightly less secure than anonymizing the layout placement,
likely due to proximity hints not being entirely eliminated;
however, both OBISA and anonymized significantly outper-
forms unaltered layout. Since OBISA circuitry often has short
timing path, similar fan-out capability as functional circuitry,
and no more likely to form timing loops than candidates in
functional circuit, these hints are unlikely able to distinguish
between OBISA and functional gates. Directions of dangling
wires is less obvious, but the result seems to suggest even
if that hint could distinguish OBISA and functional gates, its
effect is small. We are of the opinion that dangling wires can
likely be eliminated with relative ease by preinserting vias and
wire shapes from pins to BEOL layers before letting automatic
router to route BEOL edges, however, proving it would be
beyond the scope of this paper.

3) Neighborhood Connectedness: The NC (C(R)) plot of
the same layouts investigated in Table V is shown in Fig. 11.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1992

TABLE VII
STANDARD CELL COMPOSITION BIAS OF key_sel AND DES TOPLEVEL

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

TABLE VIII
POWER, TIMING, AND AREA OVERHEADS OF
WIRE-LIFTED DES MODULES

key_sel des
ctrl OBISA ctrl OBISA
Flip-Flops 840 840 1144 1144
Muxes 768 768 0 984
XORs/XNORs 0 0 562 2324
#Cells 1608 3800 1761 29276
bias 6.67E-01 | 2.82E-01 | 6.53E-01 | 5.74E-02

As can be seen from the figure, all C(R) curves saturates
as radii increases, but both OBISA insertion and wire lifting
reduces the eventual saturated C(R). As have been pointed
out in [22], the lower the measure, the more “spread out” the
circuit is, and less functional information is leaked, resulting
in a more secure FEOL layout. Fig. 11 also shows C(R)
of a Circuit432 layout anonymized (using technique described
in [19]) with the trace named 3ref_anonymized closely follows
C(R) of the layouts with OBISA insertion AND wire lifting
(traces 3ref_anonymized and 12ref_anonymized) at all ranges
but lower than C(R) of layouts without wire lifting, likely due
to wire lifting.

4) Standard Cell Composition Bias: In this evaluation,
key_sel module and toplevel module of DES core are examined
for its particular design characteristic. Being a control mod-
ule, functional cells in both modules consists only of flip-flop
and multiplexers. Thus, either unsecured module will be very
weak in terms of standard cell composition bias. This is com-
pensated by inserting OBISA cells that are common in other
modules of the same DES core. As shown in Table VII, stan-
dard cell composition bias of both modules decreased more
than 50% after OBISA insertion.

D. Implementation and Overhead on Large Designs

Two particular benchmarks were used in this paper: 1) an
AES and 2) a DES core. Crypto-cores are selected on the
grounds that they are more likely targeted by attacks and usu-
ally require higher security reinforcements. After synthesis,
the 256-bit AES core we have selected has 657292 gates,
while the 64-bit DES core has 15651. Further, DES was
also chosen in [19], and will likely serve as a good basis
of comparison. Both designs are large enough to make lift-
ing of a flattened netlist computationally heavy, and therefore
necessitates partitioning. Both AES and DES cores are from
opencores.org.

Each DES core in the design consists of 16 instances
of crp module and 1 instance of key_sel module. The
256-bit AES core consists of 16 instances of one_round
module, 7 instances of expand_key_type_A_256 module, 6
instances of expand_key_type_B_256 module, and 1 instance
of final_round module. Finally, both DES and AES core
instantiates interface cells, such as flip-flops and multiplexers
on their toplevel.

In our implementation, we chose a security level k£ = 16
for one_round of AES and k = 10 for crp of DES core.
These coefficients were chosen following the guideline as
was discussed in Section III-C3, so that the overall security
level can be made higher. This leads to an overall security
level of k = 208 for AES core and k = 160 for DES core.
To help improve efficiency, geometry-based partitioning was
performed on both toplevel modules and one_round module
of AES core. Implementation overheads in terms of power,

Module key_sel crp
OBISA OBISA
Layout Only Lifted Cud Only Lifted Cul
Power Internal 4.80E-03 | 4.25E-03 | 3.79E-03 | 1.52E-03 | 1.51E-03 | 1.50E-03
Switching | 7.48E-04 | 7.07E-04 | 5.71E-04 | 1.30E-03 | 1.18E-03 | 1.09E-03
w) Leakage | 2.88E-04 | 2.88E-04 | 2.13E-04 | 3.77E-05 | 3.77E-05 | 2.85E-05
Total 5.84E-03 | 5.24E-03 | 4.58E-03 | 2.86E-03 | 2.72E-03 | 2.62E-03
Path Min 0.4 0.5 0.32 0.87 0.82 0.8
Delays Median 0.82 0.64 0.48 0.9 0.86 0.83
(ns) Max 1.02 0.78 0.59 1.05 0.98 0.94
Total wire 425E+05 | 3.37E+05 | 1.40E+05 | 6.86E+04 | 6.74E+04 | 2.70E+04
length(pum)
Area (um?) 67599.4 10354.2
#Std-cell 9 28
#Cell 4381 1608 1099 745
#OBISA cell 2773 0 354 0
Security Level k 1 [160 1 1 10 1
Module des
OBISA
Layout Only Tafeed Ctrl
Power InFernfil 2.93E-03 | 2.94E-03 | 2.86E-03
Switching | 9.92E-03 | 9.39E-03 | 8.78E-03
W) Leakage 1.32E-03 | 1.32E-03 | 2.41E-04
Total 1.42E-02 | 1.37E-02 | 1.19E-02
Path Min 0.37 0.39 0.35
Delays | Median 0.41 0.44 0.37
(ns) Max 0.61 0.64 0.58
Total wire 4.12E+06 | 3.99E+06 | 1.12E+06
length(yum)
Area (um?) 753423
#Std-cell 34
#Cell 29293 1778
#OBISA cell 27515 0
Security Level k 1 [160 1

timing delay, and area of each module are summarized in
Tables VIII and IX.

Both tables provide two sets of comparisons.

1) In Terms of Total Wire Length, Number of OBISA Cells
Inserted As Compared to That of Functional Cells, As
Well As Number of Standard Cell Models Instantiated:
Close total wire length results between OBISA-inserted
layout with (Lifted column) and without (Only column)
wire lifting help to explain why little power and path
delay difference were observed between these two types
of layouts.

2) In terms of Area, Power, and Path Delays: OBISA-
reinforced layout that underwent wire lifting (Lifted
column under OBISA column) is compared against simi-
larly OBISA-reinforced layout without wire lifting (Only
column under OBISA column) as well as layout of same
module without any security enhancement (Ctrl col-
umn). Area results are the same for all three scenarios
since the same utilization ratio 0.6 was used for all lay-
outs during their floorplanning stage. There is a slight
increase in terms of power and path delays in the Lifted
column with regard to the Ctrl column, but in all imple-
mentations quite small, and the worst-case path delay
overhead in both cores are 3.64% and 4.08%, respec-
tively, while the total power overheads are 12.73% and
6.96%. Based on these results, we are confident to con-
clude the proposed wire lifting-based OBISA technique
introduces no significant performance overhead to the
original circuitry.

Implementation results shown in Tables VIII and IX point
at two improvements of significance that were achieved on top
of the performance reported in [19].

1) A much larger and more standard design (AES) achieved

a much higher level of security.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: OBISA WITH SECURE AND EFFICIENT WIRE-LIFTING

TABLE IX
POWER, TIMING, AND AREA OVERHEADS OF
WIRE-LIFTED AES MODULES

Module final_round one_round
OBISA OBISA
Layout Only | Lified Curl Only Lified Cul
Power In_tern.al 6.70E-03 | 6.64E-03 | 6.44E-03 | 1.02E-02 | 1.01E-02 | 9.81E-03
Switching 7.770E-03 | 7.49E-03 | 6.53E-03 | 1.16E-02 | 1.14E-02 | 1.12E-02
W) Leakage 4.24E-04 | 4.24E-04 | 3.08E-04 | 6.40E-04 | 6.40E-04 | 6.39E-04
Total 1.48E-02 | 1.46E-02 | 1.33E-02 | 2.25E-02 | 2.21E-02 | 2.16E-02
Path Min 1.37 1.32 1.2 1.83 1.79 1.71
Delays Median 1.42 1.37 1.24 1.92 1.88 1.79
(ns) Max 1.7 1.62 1.42 2.46 2.28 2.2
Total wire length (um) | 1.08E+06 | 1.07E+06 | 4.90E+05 | 1.65E+06 | 1.64E+06 | 1.12E+06
Area (um®) 119882 177073
#Std-cell 31 37
#Cell 12377 8236 17688 11856
#OBISA cell 4141 0 5832 0
Security Level k 1 [208 1 1] 16 1
Module expand_key_type_A_256 expand_key_type_B_256_OBISA
OBISA OBISA
Layout Only Lified Cul Only Lified Cud
Power InTem.al 3.53E-03 | 3.51E-03 | 3.06E-03 | 3.28E-03 | 3.09E-03 | 3.26E-03
Switching 2.40E-03 | 2.23E-03 | 1.99E-03 | 2.09E-03 | 1.91E-03 | 1.96E-03
W) Leakage 2.39E-04 | 2.39E-04 | 1.74E-04 | 2.31E-04 | 2.31E-04 | 1.74E-04
Total 6.17E-03 | 5.98E-03 | 5.23E-03 | 5.61E-03 | 5.23E-03 | 5.39E-03
Path Min 1.15 1.12 1.09 1.13 1.13 1.11
Delays Median 1.23 1.19 1.16 12 1.19 1.17
(ns) Max 1.69 1.56 1.48 1.55 1.53 1.47
Total wire length (um) | 5.00E+05 | 4.89E+05 | 2.18E+05 | 2.16E+05 | 2.41E+05 | 2.14E+05
Area (im?) 58680.1 58602.7
#Std-cell 30 30
#Cell 4662 2636 4760 2636
#OBISA cell 2020 0 2124 0
Security Level k& 1 ‘ 30 1 1 ‘ 35 1
Module aes_256_hierl
Layout OBISA | —5or Cul e
Power In_lem.al 3.49E-02 | 3.27E-02 | 2.71E-02
Switching 1.11E-01 | 7.89E-02 | 8.78E-02
W) Switching 1.18E-02 | 1.18E-02 | 1.92E-04
Total 1.58E-01 | 1.23E-01 | 1.15E-01
Path Min 0.33 0.33 0.35
Delays Median 0.49 0.49 0.44
(ns) Max 1.63 .14 127
Total wire length (um) | 1.19E+07 | 1.10E+07 | 1.06E+07
Area (um®) 5674310
#Std-cell 106
#Cell 108087 2636
#OBISA cell 107036 0
Security Level & 1 [208 1

2) Overheads in area, delay, and power are reduced from
tens to hundreds percent to around ten percent in power,
less than five percent in delay, and zero percent in area;
further, limitation on number of standard cell models
was also removed.

The first difference between the AES module and DES mod-
ule is their difference in size: one_round module of AES has
more than ten times as many gates as crp module of DES, even
before we consider additional cells brought about by insertion
of OBISA circuitry. All things considered, the OBISA-inserted
AES core consisted of 385001 gates, more than 25 times as
many gates as a DES core without OBISA insertion. Another
difference is in the fact that DES core is a very unique design:
only its key_sel module and its topmodule have flip-flops, both
of which are instantiated only once. Therefore, implementation
on AES core, whose modules are all clocked, demonstrates
the ability to be applied on synchronous design, as we have
predicted during our introduction of our pin-based definition
of edges in Section III-B2. A final observation is that our
proposed BP-based wire lifting approach allowed presented
implementation to reach security levels, such as k = 160 and
k = 208 with ease, much higher than previously reported
k = 64 [19]. This supported our early observation that sat-
isfying an arbitrarily high security level is not only easy for
the proposed BP-based approach, it often takes it even less

1993

time to conclude than lower security levels which may have
more viable solution candidates.

Equally significant is the reduction in overheads. As was
theorized previously in Section III-C1, the huge overhead’
in [19] was most likely result of the approach of eliminating
layout cues by preventing place and route tool to optimize
the design according to its function. Our evaluation in terms
of known layout-based split manufacturing security metrics
supported our hypothesis that it would not greatly impact
security performance. Our theory that OBISA insertion would
help remove the restriction on number of standard cell models
was also supported by our implementation result: only design
where any such restriction was felt was crp module of only
745 gates, where we achieved k = 10, and could have further
improved that number had we allowed ourselves overhead in
area.

E. Comparison With Contemporary Research

Since after the submission of this paper, another work [30]
have been accepted at a conference, which is similar to this
paper is also seeking to improve upon the time complexity
of wire lifting algorithm using mixed-integer linear program-
ming, and improving the security level by introducing dummy
vertices and edges. We find it encouraging that the idea that
timing complexity of wire lifting algorithm can be improved
has received support.

The primary difference between these two works, on the
other hand, is that OBISA is intended as an improvement
to existing BISA technique, and therefore carries limitations
along with advantages of BISA, as opposed to the technique
reported in [30], which is intended as an improvement to
k-security. One example of this difference is that all addi-
tional gates inserted by the OBISA technique will only occupy
white-space and therefore do not incur additional area, power,
or timing overhead. Further, the OBISA technique occupies all
available white spaces and prevents untargeted Trojan inser-
tion, which is not always possible with split manufacturing
alone.

V. CONCLUSION

In this paper, we have presented a novel implementation
approach of OBISA technique that combines hardware Trojan
deterrence through BISA circuit insertion as well as optimized
split manufacturing through wire lifting. The resulting tech-
nique is shown to be efficient, secure, and introduces very
low performance overhead to the functional design that it is
fit for industrial level of integration. The presented implemen-
tation flow is tailored to work with all mainstream EDA tools.
In the future, the proposed flow could be further improved by
expanding the presented technique to further reduce overhead
and improve solution generation efficiency.

REFERENCES

[11 U. Guin, D. Forte, and M. Tehranipoor, “Anti-counterfeit tech-
niques: From design to resign,” in Proc. IEEE 14th Int. Workshop
Microprocessor Test Verification, Austin, TX, USA, 2013, pp. 89-94.

[2] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated cir-
cuits,” in Counterfeit Integrated Circuits. Cham, Switzerland: Springer,
2015, pp. 15-36.

554% to 92% in power, 73% to 114% in delay, 167% to 502% in area were
reported in [19].

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

1994

[3]

[4]

[6]

[7]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

U. Guin, Q. Shi, D. Forte, and M. M. Tehranipoor, “FORTIs: A com-
prehensive solution for establishing forward trust for protecting IPs and
1Cs,” ACM Trans. Design Autom. Electron. Syst., vol. 21, no. 4, p. 63,
2016.

U. Guin, “Establishment of trust and integrity in modern sup-
ply chain from design to resign,” Ph.D. dissertations, Elect. Eng.,
Univ. Connecticut, Mansfield, CT, USA, 2016. [Online]. Available:
https://opencommons.uconn.edu/dissertations/1063

K. Xiao, “Techniques for improving security and trustworthi-
ness of integrated circuits,” Ph.D. dissertations, Elect. Eng., Univ.
Connecticut, Mansfield, CT, USA, 2015. [Online]. Available:
https://opencommons.uconn.edu/dissertations/947

IARPA Trusted Integrated Circuits (TIC)
Announcement. Accessed: Feb. 15, 2019. [Online].
https://www.iarpa.gov/index.php/research-programs/tic/baa
H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware Trojan detection and reducing Trojan activa-
tion time,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 1, pp. 112-125, Jan. 2012.

J. Li and J. Lach, “At-speed delay characterization for IC authentica-
tion and Trojan horse detection,” in Proc. IEEE Int. Workshop Hardw.
Orient. Security Trust (HOST), Anaheim, CA, USA, 2008, pp. 8-14.
Y. Jin, N. Kupp, and Y. Makris, “DFTT: Design for Trojan test,” in
Proc. 17th IEEE Int. Conf. Electron. Circuits Syst. (ICECS), Athens,
Greece, 2010, pp. 1168-1171.

J. Rajendran, V. Jyothi, O. Sinanoglu, and R. Karri, “Design and analysis
of ring oscillator based design-for-trust technique,” in Proc. IEEE 29th
VLSI Test Symp., Dana Point, CA, USA, 2011, pp. 105-110.

H. Salmani and M. Tehranipoor, “Layout-aware switching activity
localization to enhance hardware Trojan detection,” IEEE Trans. Inf.
Forensics Security, vol. 7, no. 1, pp. 76-87, Feb. 2012.

R. S. Chakraborty and S. Bhunia, “Security against hardware Trojan
through a novel application of design obfuscation,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2009, pp. 113-116.

M. Banga and M. S. Hsiao, “ODETTE: A non-scan design-for-test
methodology for Trojan detection in ICs,” in Proc. IEEE Int. Symp.
Hardw. Orient. Security Trust (HOST), San Diego, CA, USA, 2011,
pp. 18-23.

R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-
based SoC design methodology for hardware protection,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10,
pp. 1493-1502, Oct. 2009.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analy-
sis of logic obfuscation,” in Proc. 49th Annu. Design Autom. Conf.,
San Francisco, CA, USA, 2012, pp. 83-89.

K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication for
preventing hardware Trojan insertion,” in Proc. IEEE Int. Symp. Hardw.
Orient. Security Trust (HOST), Austin, TX, USA, 2013, pp. 45-50.

K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-
authentication technique to prevent inserting hardware Trojans,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 12,
pp. 1778-1791, Dec. 2014.

K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split
manufacturing via obfuscated built-in self-authentication,” in Proc. IEEE
Int. Symp. Hardw. Orient. Security Trust (HOST), Washington, DC,
USA, 2015, pp. 14-19.

F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer
hardware using 3D integrated circuit (IC) technology and split manufac-
turing for obfuscation,” Presented at the 22nd USENIX Security Symp.
(USENIX Security), 2013, pp. 495-510.

X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability-driven white
space allocation for fixed-die standard-cell placement,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 4, pp. 410419,
Apr. 2003.

J. J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proc. Conf. Design Autom. Test Europe, Grenoble, France,
2013, pp. 1259-1264.

M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, “Split-
fabrication obfuscation: Metrics and techniques,” in Proc. IEEE Int.
Symp. Hardw. Orient. Security Trust (HOST), 2014, pp. 7-12.

Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The cat and mouse in
split manufacturing,” in Proc. 53rd Annu. Design Autom. Conf., Austin,
TX, USA, 2016, p. 165.

J. Magaia, D. Shi, J. Melchert, and A. Davoodi, “Are proximity attacks
a threat to the security of split manufacturing of integrated circuits?”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 12,
pp. 3406-3419, Dec. 2017.

Program
Available:

[25]

[26]

[27]

(28]

[29]

[30]

C.T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, “Automatic
obfuscated cell layout for trusted split-foundry design,” in Proc. I[EEE
Int. Symp. Hardw. Orient. Security Trust (HOST), Washington, DC,
USA, 2015, pp. 56-61.

Y. Xie, C. Bao, and A. Srivastava, “Security-aware design flow
for 2.5D IC technology,” in Proc. 5th Int. Workshop Trustworthy
Embedded Devices (TrustED), 2015, pp. 31-38. [Online]. Available:
http://doi.acm.org/10.1145/2808414.2808420

Q. Shi, K. Xiao, D. Forte, and M. M. Tehranipoor, “Obfuscated built-
in self-authentication,” in Hardware Protection Through Obfuscation.
Cham, Switzerland: Springer Int., 2017, ch. 11, pp. 263-289.

R. J. Turk, “Cyber incidents involving control systems,” Idaho Nat. Eng.
Environ. Lab., Idaho Falls, ID, USA, Rep. INL/EXT-05-00671, 2005.
G. Gamrath et al., “The SCIP optimization suite 3.2, ZIB, Berlin,
Germany, Rep. 15-60, 2016.

M. Li et al., “A practical split manufacturing framework for Trojan
prevention via simultaneous wire lifting and cell insertion,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., to be published. [Online].
Available: https://ieeexplore.ieee.org/document/8419279

Qihang Shi received the Doctorate degree in
computer engineering from the University of
Connecticut, Mansfield, CT, USA, in 2017.

He is currently a Post-Doctoral Associate with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA. His
current research interests include hardware security
and trust and very large scale integration test and
reliability.

Mark M. Tehranipoor received the Doctorate
degree from the University of Texas, Dallas, TX,
USA, in 2004.

He is currently an Intel Charles E. Young
Preeminence Endowed Professor of cybersecurity
with the University of Florida, Gainesville, FL,
USA. His current research interests include hardware
security and trust, supply chain security, Internet
of Things security, and very large scale integration
design test and reliability.

Domenic Forte received the Ph.D. degree in elec-
trical and computer engineering from the University
of Maryland, College Park, MD, USA, in 2013.

He is currently an Assistant Professor with the
Electrical and Computer Engineering Department,
University of Florida, Gainesville, FL, USA. His
research is primarily focused on the domain of hard-
ware security. His current research interests include
investigation of hardware security primitives, hard-
ware Trojan detection and prevention, security of
the electronics supply chain, and reverse/anti-reverse
engineering.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:44:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

