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With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart home
appliances, as well as traditional computing platforms such as personal computers and servers have been in-
creasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded devices
and difficulty in wide-coverage and on-time software updates, software-only cyber defense techniques, such
as traditional anti-virus and malware detectors, do not offer a silver-bullet solution. Hardware-based secu-
rity monitoring and protection techniques, therefore, have gained significant attention. Monitoring devices
using side-channel leakage information, e.g., power supply variation and electromagnetic (EM) radiation, is
a promising avenue that promotes multiple directions in security and trust applications. In this article, we
provide a taxonomy of hardware-based monitoring techniques against different cyber and hardware attacks,
highlight the potentials and unique challenges, and display how power-based side-channel instruction-level
monitoring can offer suitable solutions to prevailing embedded device security issues. Further, we delineate
approaches for future research directions.1
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1 INTRODUCTION

With the advent of the Internet of Things (IoT), embedded devices, and networked high-
performance computation platforms and data centers, various cyber attacks such as malware,

1DISCLAIMER: This article is not subject to copyright in the United States. Commercial products are identified in order
to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best
available for the purpose.

Authors’ addresses: J. Park, F. Rahman, D. Forte, and M. Tehranipoor, Florida Institute for Cybersecurity Research, Uni-
versity of Florida, Gainesville, FL 32611; emails: {jungminpark, fahim034}@ufl.edu, {dforte, tehranipoor}@ece.ufl.edu;
A. Vassilev, National Institute of Standards and Technology, Gaithersburg, MD 20899; email: apostol.vassilev@nist.gov.
ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the
United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for government purposes only.
© 2019 Association for Computing Machinery.
1550-4832/2019/12-ART6 $15.00
https://doi.org/10.1145/3359621

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 6. Pub. date: December 2019.

https://doi.org/10.1145/3359621
https://doi.org/10.1145/3359621


6:2 J. Park et al.

ransomware, distributed denial-of-service (DDoS), and so forth, have become a significant concern
in the present world. All network-connected devices—from high-performance PCs and cloud
servers to low-cost and lightweight IoT and embedded devices–are susceptible to such cyber
and hardware attacks. Since low-cost loT devices have limited resources, such as low processing,
memory capability, and energy, deploying sophisticated defense mechanisms is extremely difficult
and financially infeasible making them attractive targets to adversaries [72]. The attacks and
vulnerabilities are expected to be even more with an estimated 26 billion connected devices by the
end of 2020 [49]. Many IoT devices can be infected by a botnet malware and be used as “zombies”
for distributed denial-of-service (DDoS) attacks [4]. An adversary can extract private data such as
credit card numbers and passwords to log into sensitive portals hosted by these devices, or obtain
unauthorized control to critical infrastructure such as power plants by malware such as Stuxnet
[5]. Furthermore, a malware infection through Internet or physical access can cause malfunction
of medical devices and smart cars, as well as personal computers and cloud devices. It is with
no doubt that such successful cyber attacks can lead to serious economic loss, infrastructural
damage, or injury to humans [55].

It is apparent that thwarting the threats and vulnerabilities against cyber attacks requires
lasting attention. In particular, runtime monitoring of computing devices from all domains is
highly necessary to detect malware, unauthorized access, and illegitimate controls and applica-
tions. Such monitoring techniques can be either software-based or hardware-based. The software-

based method mostly performs control-flow integrity (CFI) assessment [10] which can monitor
unexpected changes by a malicious code by analyzing the runtime control-flow graph (CFG). For
instance, in order to enforce the software-based CFI, machine-code instructions (or instrumen-
tations) for an indirect function call and a corresponding function return can be rewritten in a
way that unique IDs are assigned for the source and the destination functions, and the validity
of the IDs are checked for the integrity verification [1]. However, such software-based meth-
ods have disadvantages of performance degradation (e.g., CFI in [1] and program shepherding
in [38] have 45% and 100% performance overhead for the SPEC2000 benchmark program crafty
[34], respectively) and unavailability to devices with resource-constrained architecture. Further,
an attacker can potentially evade such countermeasures. For example, while non-executable data
(NXD) and non-writable code (NWC) of software-based CFI can be protected by page-based access
control (e.g., via write-xor-execute,W ⊕ E), an attacker can disable it with a syscall command to
mprotect()/VirtualProtect() [18]. Traditional signature-based software monitors for standard
computing devices, such as common anti-virus or malware detection software, do not provide suf-
ficient protections as they face difficulties in detecting zero-day threats and the embedded device
may not have sufficient resources (e.g., memory to store and update known malware signatures)
to support such schemes [30].

On the other hand, hardware-based methods usually use embedded and/or independent trusted
hardware to observe the behavior of a program running on the device under monitor. Hardware-
based CFI architecture integrates hardware monitors into processor’s pipeline stages or hardware
debug interface such as JTAG or scan chain is used to validate CFI at runtime. Hardware-based de-
tection methods require smaller overhead for resource and latency compared to the software-based
counterparts. However, such techniques heavily rely on machine-learning (ML) techniques that
need extensive training and validation and, therefore, may require additional hardware supports
[56, 66, 70]. Based on the existing limitations, it is evident that neither the prevailing software-
only or hardware-only techniques can provide a complete defense against the numerous threats
and attacks.

Recently, researchers have paid more attention to hardware-based methods that leverage side-
channel leakages such as power consumption and EM [14, 19, 48, 50, 51, 68]. Such side-channel
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leakages can be used for revealing secret data residing inside the device, e.g., private key used
for encryption. This is traditionally known as side-channel attacks (SCAs). However, side-channel
information can also be leveraged for analyzing the status of a computing system at runtime. One
crucial way to do so is to disassemble the runtime code, i.e., to translate side-channel information
into assembly codes consisting of an instruction and operands (such as the source register or the
destination register) in a timely sequence. It can be used for verification of program running on
the device. In this article, we refer to this as a side-channel disassembler (SCD). Using a SCD, the
control flow of the target device can be tracked in the coarse- or fine-grained granularity, both in
software and hardware domains, without any performance degradation of the target device. A SCD
is multipurpose as it allows one to enforce decoupled monitoring of targeted devices. For exam-
ple, it can analyze the runtime status of the device and can detect potential malware and security
breaches, which is of concern to many. A DARPA program called LADS [16] that is similar to this
concept attempts to achieve security and protection using different side channels that are analog in
nature. Additionally, a SCD can potentially perform hardware-firmware attestation and firmware
reverse engineering, even against firmware that is protected by encryption and anti-tamper tech-
nologies. Such a SCD-based reverse engineering may be considered as a potential threat for IP
theft, whereas the same technique can be used for protection through firmware/software verifica-
tion and authentication. One way to maintain the integrity of the underlying firmware is to verify
whether the firmware is modified while running on the device by monitoring the side-channel
information. Since disassembly techniques do not require additional hardware to be embedded
in the original processor architecture, legacy devices without internal hardware monitors, such
as performance counters or JTAG, can be greatly benefited. Such devices, therefore, can be pro-
tected by attaching an external side-channel monitor capable of collecting necessary power or EM
signature [50].

To date, existing SCD techniques have mostly been implemented on low-performance micro-
controllers due to obvious technical limitations, such as noise-free data acquisition, additional
hardware (e.g, oscilloscope with high sampling rates and high bandwidths, high-gain amplifiers,
or filters) cost, complex data processing, and so forth, that get even more pronounced for high-
performance processors used in personal computers and smartphones. For example, noise-free
data collection from high-performance multi-core processors is still a challenge and existing SCD
techniques are not always readily scalable for complex systems. One may also argue that it is not
economically feasible to employ expensive and bulk instruments for collecting side-channel leak-
ages for low-cost IoT and embedded devices using simpler microcontrollers or processing units.
As one can see, resolving the prevailing challenges requires a unified and holistic effort from the
research community. We firmly believe that by overcoming the challenges, this technique can offer
a comprehensive solution to present-day cyber-threats in all domains of electronic devices.

In this work, we focus on analyzing hardware-based monitoring techniques leveraging power
side channels for IoT and embedded devices and highlight potential applications and prevailing
challenges for supporting high-performance computing devices as well. We, first, present a tax-
onomy of hardware-based monitoring methods to summarize and compare existing techniques
based on different threat models. Next, we introduce the assembly-level instruction monitoring
and disassembly technique for embedded devices using power side-channel leakage. We also pro-
vide potential applications such as malware detection and firmware reverse engineering using the
disassembly technique. Finally, we outline the unique challenges in this field and propose high-
level approaches for future research directions.

The rest of the article is organized as follows. Section 2 discusses the adversarial threat
models focusing on different attacks and attackers’ capabilities. Section 3 presents the taxonomy
of hardware-based monitors and discusses existing side-channel monitors. Section 4 discusses
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potential applications leveraging the proposed technique. Section 5 provides challenging problems
in this field and the future research directions. Finally, we conclude in Section 6.

2 ADVERSARIAL CAPABILITIES AND DEFENSE STRENGTH

Before analyzing different side-channel information-based monitoring and security schemes in
detail, it is imperative that we understand the underlying threats from the adversary, as well as
different levels of defense that may be supported by various techniques against such threats. We
note that the associated threats may have similar components across different types of devices
such as IoT and embedded modules as well as high-performance computing platforms.

We define two different adversarial models—Type-I and Type-II—based on the attackers’ capabil-
ities. We assume that Type-I attackers only have access to the device under attack for information
gathering. They cannot manipulate the operation of the given device, i.e., they cannot control or
modify any of the data memory and code memory by adversarial code injection or malware. We
assume that the attackers can access only the data input/output ports and power pins of the device
under attack, and the target device can be modeled as a black box if necessary. Traditional non-
invasive side-channel attacks, such as DPA, CPA, and profiling attacks, are likely to be performed
by Type-I attackers.

On the other hand, Type-II attackers can launch active runtime attacks as they have the ability
to control or modify data memory or code memory depending on the capabilities (controllabil-
ity) available to manipulate the original control flow [18]. However, as one can understand, not
all Type-II attackers have the same amount of capabilities and control over the device under at-
tack. For example, we assume that Type-II level-1 attackers can control only data memory which
includes the stack and the heap, but they cannot modify the code memory. This means that the
attackers cannot perform code injection or code tampering attacks. By modifying data memory
and executing an indirect branch, attackers can redirect control flow of existing code with a ma-
licious result in the code memory. Code-reuse attack (CRA), such as the return-to-libc or return-
oriented programming, is among such Type-II level-1 attacks [8]. Further, we assume that Type-II

level-2 attackers have control over both the data memory and the code memory. Such attackers
can, therefore, inject malicious codes or data structure, referred to as code injection attack [21].
Finally, we assume that the Type-II level-3 attackers can control all memory elements including
registers and flip-flops. They can perform non-invasive fault injection attacks such as glitching
attack [6], temperature fault attack [32], and CLKSCREW attack [67] as well as other lower level
attacks. Additionally, the attackers can perform semi-invasive attacks on the device.

We note that as the attackers’ control and capability over the device under attack increases,
the concealment of the attack decreases since higher level attacks become more prominent and
tend to show activities and properties that diverge enough for a legit user to identify easily (e.g.,
the device under attack may become unresponsive, malfunction, or show unusual network activ-
ity). Therefore, the quality and accuracy of the defense mechanism employed is highly related to
the threat under consideration. A security monitoring and defense scheme based on side-channel
information may offer a generic coarse-grain monitoring for defending against attacks that uti-
lize non-/semi-invasive techniques such as fault injections (i.e., Type-II level-3 attacks); however,
it may not be suitable for detecting more subtle attacks that modify the original data/control flow
to make divergent operations from the legit one (e.g., Type-II level-1,2 attacks). Henceforth, a more
powerful monitoring mechanism is required to detect more concealable threats. Figure 1 shows
the controllability and concealment of the adversary model. We note that the prevailing defense
mechanisms, as mentioned in Section 3, are often geared toward selective threat models and fail
to offer comprehensive protections against cross-layer threats from all levels and types.
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Fig. 1. Controllability and concealment of adversary models.

Fig. 2. Taxonomy of hardware-based monitors.

3 TAXONOMY AND EXISTING HARDWARE-BASED MONITORS

Side-channel information, i.e., information that does not directly refer to the functional outcome
of the device but may potentially exhibit the activity of the device, can be obtained from differ-
ent sources such as supply power, EM radiation, temperature, or by utilizing different sensors,
registers, and communication channels. Such information capturing monitors can be generally
categorized into internal monitors, e.g., performance monitoring units (PMUs) with hardware per-
formance counters (HPCs), and external monitors, e.g., EM probe and monitors, depending on
whether they are integrated into, or external to, the original hardware design. Internal monitors
are classified by used resources to estimate the activity of the device and external monitors are
classified by the objective, such as extracting data and tracking control flow. As shown in Figure 2,
each monitor has the range of attack or defense levels. For the sake of simplicity, we mostly focus
on the external side-channel information such as power. Details of such monitors are as follows.

3.1 Internal Monitors

The internal hardware-based monitoring method exploits various embedded hardware resources
including CFI architecture, debug interface (e.g., scan chain, JTAG, performance monitoring units)
that is common in many modern SoCs or memory access monitors.
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3.1.1 CFI Architecture. A CFI architecture such as shadow call stack (SCS) with a buffer can be
used to detect tampering with the return address during a function call by comparing it from two
different and independent stacks where the address copies are stored [13]. Such a technique can
prevent Type-II level-1 attacks such as code-reuse attacks (e.g., return-oriented programming (ROP)
and jump-oriented programming (JOP)) as well as Type-II level-2 and 3 attacks. Additionally, legit
program return addresses can be labeled “valid” and stored in an isolated memory for future run-
time comparison [2]. However, such techniques are potentially vulnerable to control-flow bending
(CFB) attacks [17, 18]. Another major drawback is that the secure on-chip memory, i.e., the shadow
stack or label state memory where the addresses are stored for integrity comparison, may not be
readily available for lightweight IoT devices.

3.1.2 Debug Interface. Hardware debug interface can monitor and detect several Type-II level-2

and 3 attacks. For example, an interface following IEEE-ISTO NEXUS 5001 standards [20] can be
used to observe branch target address at runtime to monitor any mismatch from the targets stored
in the branch destination table caused by potential malware [27]. However, such a technique usu-
ally requires an additional unit to collect and process data from the debug interface. Additionally,
PMUs using HPCs can be used for micro-architectural event monitoring for potential anomaly de-
tection [66, 70]. Alam et al. [3] proposed machine-learning-based real-time detection mechanism to
deal with security against micro-architectural side-channel attacks including cache-based attacks
and branch-prediction-based attacks, which can identify abnormalities in the number of micro-
architectural events while those side-channel attacks are being executed. PMUs offer a fine-grain
filtering for individual executions and provide a faster response than the software-only counter-
parts. Also, being an integrated part of the hardware, such monitors operate transparently to any
program running on the processor. Being oblivious of the program that is running, HPCs capture
true activity information, and, therefore, it is very hard for the adversary to control HPCs for evad-
ing the malicious footprint generated due to any external malicious software. However, additional
hardware supports as well as extensive training for machine-learning classification are required.

3.1.3 Memory Access Monitors. Analyzing memory access patterns using hardware monitors
can offer defense against Type-II level-2 and 3 attacks. In such attacks, an infected program can
request suspicious memory access for undercover attacks such as rowhammer attack on DRAM
[37]. Yoon et al. [75] utilized profiled memory behavior via Memory Heat Map (MHM) collected
by an on-chip hardware module called Memometer for malware detection. Xu et al. [73] utilized
virtual memory access patterns for identifying potential anomaly. In both cases, ML techniques
were used to differentiate between malicious and benign programs.

These internal monitoring methods often require additional resources such as a control mecha-
nism to collect and process data from internal monitors as well as heavily rely on machine-learning
techniques due to limited available information distinguishable features. In addition, a real-time
detecting algorithm using internal resources may degrade the performance of the target device.
Further, legacy devices do not usually contain such internal hardware monitors. Therefore, CFI as-
sessment and monitoring techniques using internal embedded hardware is not readily attainable
for legacy and resource-constrained devices.

3.1.4 Control-Flow Protection. Werner et al. [71] proposed a sponge-based control-flow pro-
tection technique which supports the confidentiality of software IP and its authentic execution on
IoT devices. Firmware is stored in a sponge-function-based authenticated encryption scheme [7]
in the memory and each instruction is decrypted after the fetch pipeline stage such that correct
instructions can be decoded and executed. Since the encryption depends on the previous instruc-
tion states and the current instruction (i.e., control flow), control flow deviation by code-reuse,
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code-injection, and fault-injection results in randomized instructions by incorrect decryption. The
randomized instructions can thwart an attacker’s control. Also, this method prevents firmware IP
theft due to firmware encryption. However, since side-channel leakage is not considered in such
cases, it does not have robustness against side-channel attacks.

3.2 External Side-Channel Monitors

The external monitoring methods generally use side-channel leakages such as power consump-
tion, EM radiation, temperature [33], or timing [53] with the measurement and monitoring units
being independent from the target device. The objective of the side-channel monitor is to extract
private data or estimate control flow (e.g., instruction sequences) at runtime. Side-channel anal-
ysis techniques to extract secret data usually involve adversarial intentions, e.g., stealing private
encryption keys, and so forth, to control and exploit the devices and network. Such data extrac-
tion attacks can further be classified into non-profiling and profiling attacks depending on whether
a signature profiling is required. Common non-profiling attacks are differential power analysis
(DPA) [40], and correlation power analysis (CPA) [9] attacks. On the other hand, template attacks
[11], mutual information analysis (MIA) [23], and various machine-learning-based attacks [31, 57]
correspond to profiling attacks that analyze and classify the side-channel signature into certain do-
mains for confident extraction of underlying information. Side-channel monitoring methods for
data extraction have been used by Type-I adversaries and well-studied for the last few decades [60,
62, 77]. From a defense point of view, this monitor can be used to evaluate side-channel leakage
of embedded devices by performing side-channel attacks as well as a leakage assessment test such
as a test vector leakage assessment (TVLA) t-test [24].

Another objective of side-channel monitoring can be to validate the control flow integrity (CFI).
This defensive technique against various attacks can further be classified into coarse-grained and
fine-grained CFI methods based on the granularity of monitored activities. If the CFI design is based
on a periodic activity (e.g., loop) in the program [61], a coarse-grained estimation of per-iteration
execution time using side-channel leakage can be statistically compared to a benign program to
ensure the legitimacy of the runtime control flow. In [61], repetitive program activity such as
loops is analyzed by the spectrum of EM side-channel signals with spikes at specific frequen-
cies corresponding to the iteration time of the loop. Based on the spectral profiling of a benign
program, it is possible to recognize the spectrum of malicious programs. This method, therefore,
can be applied for malware detection with repetitive features [51]. A more precise CFI policy is
based on instruction-level granularity, which is referred to as a fine-grained CFI method. The fine-

grained CFI monitor can be utilized for reverse engineering of instruction code, also known as an
instruction-level disassembler, as well as malware and anomaly detection. As one can see, differ-
ent hardware monitors (e.g., power-based monitors vs. EM monitors) may lead to different imple-
mentations and analysis techniques; nonetheless, the basic target applications (attack or defense)
remain the same irrespective of the monitor itself.

3.2.1 Side-Channel-Based Coarse-Grained CFI Methods. Clark et al. [14] proposed a malware
detection technique, called WattsUpDoc, on an embedded medical device and a supervisory control
and data acquisition (SCADA) device via power side-channel. WattsUpDoc collects system-wide
power consumption data at runtime and identifies anomalous activity using supervised ML al-
gorithms using traces of both the normal and abnormal activities. Since the medical and SCADA
devices have a small number of functional states (e.g., idle, booting, shutdown, and compound
tasks in case of a pharmaceutical compounder), the normal behavior can be characterized at the
functional-level granularity and WattsUpDoc can detect abnormal behavior caused by known mal-
ware with at least 94% accuracy and by unknown malware with at least 85% accuracy. Although
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this technique does not necessarily perform standard CFI assessment, it is able to distinguish in-
trusive behaviors caused by potential malware.

Nazari et al. [51] proposed a technique called EDDIE that can detect anomalies caused by code-
injection attacks in program execution using EM side channel. In this approach, the authors im-
plement a loop-oriented execution where the CFG of the program represents the flow from a
loop-level state to other loop-level states. The loop-level states at runtime can be estimated by
an EM spectrum resulting from short-time Fourier transform (STFT) of collected EM signals [61].
By comparing monitored control flow to the reference (malware-free) control flow using a statis-
tical Kolmogorov-Smirnov (K-S) test, EDDIE can detect malware injected into 10 benchmarks from
MiBench [28] with at least 92% accuracy.

While these coarse-grained monitoring techniques can detect malware from Type-II level-2 and
Type-II level-3 adversary models, they cannot detect the lower-level malware such as sophisticated
code-reuse attacks. Therefore, fine-grained CFI monitoring methods are required to identify more
subtle changes in the control flow caused by potential malware.

3.2.2 Side-Channel-Based Fine-Grained CFI Methods. In order to identify malicious instruction
code that can extract a secret key or redirect the control flow to existing code with a malicious re-
sult (e.g., code-reuse attack), an instruction-level side-channel monitor, also called a side-channel
disassembler (SCD), can be used for fine-grained monitoring and analysis. A SCD can be designed
in such a way that the instructions (code) tracked using side channel, such as power consumption
or EM radiation, can be statistically compared to the reference control flow with instruction-level

granularity to detect any anomaly, if it exists. In addition, a SCD can be used for reverse-
engineering of software or firmware running in embedded devices since its granularity can be
tuned to individual instructions. Reverse-engineering-protected firmware or software is very
difficult since the software is stored in the secure memory [29, 65]. In order to prevent software in-
tellectual property (IP) piracy, code and data are encrypted and then stored in the tamper-resistant
memory. Despite the difficulty of reverse engineering, a SCD can recognize the behavior of de-
crypted code and potentially detect software IP piracy. For example, a company may want to know
whether its software IP is cloned by competitors or not. Since the side-channel dissembler can
recognize the behavior of decrypted code, it can be utilized to detect software IP piracy. In some
cases, one may need to get access to firmware in a legacy system. Although firmware is encrypted,
side-channel analysis would be a useful tool to reverse-engineer the firmware and understand the
functionality of the system. The only other alternative is to invasively extract the firmware (e.g.,
probing), which is risky and could destroy the legacy device (very few may be available).

Researchers have demonstrated various side-channel leakage-based disassembly techniques,
each slightly different from one another due to the target devices and applications. Vermoen et al.
[68] introduced Java Card reverse-engineering methodology that can recognize 10 different byte-
codes with at least 90% accuracy. It correlates a measured power trace during operation of the
smart card at 4MHz with an averaged power template of each bytecode and then classifies the
measured power into the bytecode with the maximum correlation.

Eisenbarth et al. [19] proposed reverse-engineering of the program executed on PIC16F687 mi-
crocontroller at 1MHz clock frequency. Statistical techniques such as Bayesian classifiers are used
to construct classification templates from the known power consumption traces. It achieves a
recognition rate of 70.1% on 35 test instructions and 50.8% on real code by applying an a priori

statistical model such as a hidden Markov model (HMM).
Msgna et al. [50] accomplished a 100% recognition rate on a chosen set of 39 instructions in an

ATMega163-based smart card running at a clock frequency of 4MHz. They classify the power
traces by applying a k (=1)-nearest neighbors (kNN) algorithm in combination with principal
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component analysis (PCA). The 100% recognition rate, however, has not been reproduced by
Strobel’s experiments when Msgna’s approach was applied to a different microcontroller,
PIC16F687 (less than 43% for k = 10) [63].

The SCD proposed by Strobel et al. [63] has a recognition rate of 96.24% on test code and 87.69%
on real code on a PIC16F687 using localized multiple EM channels (antennas) with a decapsulated
package without the a priori statistical model (e.g., Markov chain). Polychotomous linear discrimi-
nant analysis (LDA) is used for the dimensionality reduction and the kNN machine-learning algo-
rithm classifies collected EM leakages with the reduced dimensionality into 33 instruction classes.

Liu et al. [46] proposed code execution tracking on a STC89C52 microcontroller, an implemen-
tation of Intel’s 8051 architecture, at 11MHz clock frequency using power side channel. An HMM
is applied, and in order to model good observation symbols, signal extraction with a filter to re-
move low SNR frequency components and PCA dimensional reduction is performed. The emission
probability in the HMM is estimated by multivariate Gaussian distribution. Instructions of nine
benchmark programs are recognized with 99.94% accuracy and less modification of original code
(e.g., NOP instruction is replaced with an ADD A,0x00) can be detected.

McCann et al. [48] proposed an instruction-level power estimator (IPE) on ARM Cortex-M0
using linear regression to spot even subtle leakage in implementations. It is an inverse function
of the SCD, i.e., if a SCD is defined as a function, y = f (x ), an IPE is represented as x = f −1 (y),
where x is a power trace and y is an instruction. It allows a programmer to estimate power side-
channel leakage during execution of a program without real measurement. The IPE can be used in
order to detect vulnerable instructions which can reveal secret information via power side-channel
leakage. In addition, for malware detection, the IPE can build a fine-grained power signature of a
benign application for a malware-free signature reference.

Most of the power side-channel-based fine-grained CFI assessment techniques follow the
similar basic steps of data collection, preprocessing for noise reduction, and using various
machine-learning techniques to identify the underlying control flow or dissimilarities, if any.
Existing solutions suffer from the following shortcomings: (1) the small number of instruction
classes to recognize makes applicability of existing disassemblers limited. The existing methods
are not able to recognize operands such as address of registers, making the reverse-engineering
incomplete. (2) Most of the target devices are running at low clock frequency. Disassembling
these devices is easier than those with the higher clock frequency since the higher the frequency,
the more difficult signal acquisition would be and consequently more noise to handle during
analysis [22]. In a similar effort, below we present an instruction-level power-based SCD [54]. Our
technique can dissect a runtime program to extract individual instructions, i.e., both the opcode
and operands, efficiently with an accuracy of 99.03%. We assume that there is no dependency
between instructions. Under this assumption, some SCDs, e.g., presented by Eignebarth et al. and
Liu et al., are unable to utilize the control flow information of a given program to be disassembled
for a higher accuracy, and it is impossible to reverse-engineer unknown firmware in IoT devices.
However, our SCD can track code execution of both known and unknown programs since we
assume that every instruction can be executed independently.

Our SCD obtains all instruction templates from an original device (e.g., IoT home security sys-
tem, smart thermostat) and utilizes machine-learning algorithms to uniquely identify instruc-
tions executed on the device. The feature selection using Kullback-Leibler (KL) divergence and
the dimensional reduction using PCA in the time-frequency domain are proposed to increase the
identification accuracy. Moreover, a hierarchical classification framework is proposed to reduce
the computational complexity associated with large instruction sets. In addition, covariate shifts
caused by different environmental measurements and device-to-device variations are minimized
by our covariate shift adaptation technique. This technique is demonstrated on an ATMega328P
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Fig. 3. Process flow for our disassembler [54].

[35] keeping low-cost and lightweight IoT applications in mind. We would like to emphasize that
this approach can be generalized to devices of similar or higher complexity. Experimental results2

demonstrate that our disassembler can recognize test instructions including register names with
a success rate no lower than 99.03% with quadratic discriminant analysis (QDA). Figure 3 shows
overall workflow for our SCD. We follow the below basic steps to disassemble runtime instructions:

Step 1. Power traces for instructions are collected from a training device.
Step 2. Time-varying power traces are mapped into the time-frequency domain by contin-
uous wavelet transform.
Step 3. Feature selection and normalization are performed using KL divergence with co-
variate shift adaptation of which details are presented in Section 5.2.
Step 4. Feature dimensionality reduction (for efficient data analysis) is performed using
PCA.
Step 5. Traces with reduced features are trained by ML classifiers to generate reference
templates (i.e., creates decision boundaries).
Step 6. Power traces collected from a target device (i.e., device under assessment) are clas-
sified based on the templates, and then the disassembler generates the reverse-engineered
assembly code running on the target device.

Our SCD has advantages as follows: It can identify operands such as the address of source
registers or destination registers as well as opcode via a three-phase hierarchical process:

(i) identifying the instruction group3 that a collected power trace l belongs to;
(ii) identifying a particular instruction (opcode) within the identified group from the previous

step; and
(iii) identifying the associated operands, i.e., source and destination registers (Rs and Rd, respec-

tively), if any.

2In this experiment, 2,500 power traces per class are used for the training and 500 power traces per class are collected for
the testing. The accuracy is the ratio of the number of correctly classified traces to the total number of test traces.
3A total of 112 instructions out of 131 instructions except for residual control, multiplication, and residual branch instruc-
tions can be recognized by the proposed disassembler. For ease of disassembly, these 112 instructions are classified into
eight groups based on corresponding operands.
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Hence, this classification capability has the potential to detect sophisticated malware and various
types of other attacks (see Section 4).

Table 1 shows a comparison of existing side-channel hardware monitors in terms of the target
device, the clock frequency, the number of classes, the accuracy, the granularity of control flow,
the dimensionality reduction, the classifier, the type of side-channel leakage used, and the tar-
get application. We see that coarse-grained techniques can sustain a relatively good amount of
hardware complexity and can be implemented on low-level commodity processors. However, the
fine-grained techniques that target instruction-level disassembly are mostly implemented on light-
weight microcontrollers. An obvious reason behind it is that the granularity needed for instruction-
level disassembly is extremely finer and the noise sensitivity affected by the complex pipeline and
instruction set architecture (ISA) plays a big role in properly identifying the instructions from leak-
age information (details on these challenges are presented in Section 5). However, for lightweight
IoT devices, the complexity of the processing unit, i.e., MCU, is much less than that of the high-end
commodity processors making the former a suitable choice for low-cost and resource-constrained
applications.

4 POTENTIAL APPLICATIONS

As shown in Figure 2, a fine-grain CFI assessment technique can be used for defense against sev-
eral possible threats, as well as for adversarial attacks. In this section, we discuss some potential
application cases where the user can leverage our proposed power side-channel-based instruction-
level disassembler—for malware detection, firmware reverse-engineering, hardware-firmware co-
attestation, and detecting Meltdown and Spectre attacks, as shown in Table 2.

4.1 Malware Detection

Due to various reasons, such as lightweight architecture, resource-constrained design, and in-
adequate security, IoT and embedded devices are prone to various malware infections. Here, an
adversary can insert malicious codes that can leak secret information, provide unauthorized con-
trol, and/or infect other IoT devices connected to the network. The inserted malware may yet be
undetectable as it may remain in a stealthy mode and not hamper the original functionality of
the device unless triggered. However, the activated malware changes the activity of the infected
device, with respect to the legitimate behavior, via interrupts and unauthorized routine calls, and
forces the embedded device to perform malicious activities. For example, to prevent the first-order
side-channel attack, the original key of the AES encryption is masked with a random number [59].
However, if the random number is maliciously turned into a fixed value, such as all binary zeros or
ones, the masking method is useless and the first-order side-channel attack is, therefore, possible.
The adversary can perform this attack via a malware. For example, we consider the malware that
infects the original AES encryption code in the device to modify the instruction xor r16, r17
into xor r16, r0, where an original 8-bit subkey, an 8-bit random number, and a zero number are
stored in r16, r17, and r0, respectively. That is, the original key is still stored in r16 after execut-
ing the instruction and a following non-linear operation (Sbox) with the unmasking key generates
significant side-channel leakage.

Note that the control flow by the example malware is the same as the reference one. Hence,
it is extremely difficult to identify the modification via coarse-grained monitors. However, such
sophisticated malware can be confidently detected by an accurate disassembler (e.g., like the one
we discussed in Section 3) due to its capability to detect the change of the source register via
the instruction disassembly. To employ this disassembly technique to detect potential malware,
one needs to collect runtime power signature from the device and check the integrity of the pro-
gram running on the board. If it shows any discrepancy, in terms of opcodes or operands in the
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Table 2. Potential Applications for Fine-Grained Instruction-Level Disassembly

Application Type Assumption Action summary

Malware
Detection

Defense
Mechanism

Malware violates
legitimate CFI by
adding/modifying
instructions/registers
(source, destination).

1. Collect power signatures for runtime instruction disassembly.
2. Do in-field CFI assessment by performing instruction-level
disassembly.
3. Compare against the golden program control flow.
4. Flag suspicious instructions due to malware.

Firmware
Reverse-
Engineering

Adversarial
Threat/
Defense
Mechanism

Power signature model
is comparable to that of
the target devices and
instruction sets.

1. Collect power signatures from boot process.
2. Match power templates for known hardware models and
instruction sets.
3. Perform instruction-level disassembly.
4. Do consecutive instruction placement to obtain
reverse-engineered firmware.

Hardware-
Firmware
Co-attestation

Defense
Mechanism

Certain non-varying
features are extractable
even with the presence
of noise.

1. Collect power signatures from multiple target devices at time
zero (golden data).
2. Extract and store distinct and non-varying features (solving
covariate shift problem).
3. Collect in-field runtime signatures at time t.
4. Extract runtime features and compare with that from step 2.
5. Verify hardware-software authenticity.

Meltdown/
Spectre
Detection

Defense
Mechanism

Meltdown and Spectre
attacks execute iterative
memory access
instructions which
violate legitimate CFI.

1. Collect power signatures from the monitored CPU.
2. Do in-field CFI assessment by identifying iterative loop modules.
3. Determine if the identified loop is normal operations compared
to the benign control flow.
4. Flag attack instructions and then terminate the application.

monitored assembly code, a flag is raised for potential malware infection. Therefore, the disassem-
bly technique can detect malicious activities from the hardware at runtime, even though malware
control flow has similarity with that of goodware. The summarized action steps for malware de-
tection are shown in Table 2.

4.2 Firmware Reverse-Engineering

An adversary can choose to perform firmware piracy by reverse-engineering the code for poten-
tial financial benefits, unauthorized controls, and creating backdoors, as it allows him to deploy
unauthentic or counterfeit devices with cloned (pirated) firmware in addition to counterfeit and
malicious software and updates. In addition, an adversary can introduce subtle modifications to
the original functionality by exploiting the firmware code vulnerabilities that may lead to severe
damage to the system [42].

As one can see, an instruction-level SCD (like one we summarized in Section 3) can leverage
power signature to reverse-engineer the firmware residing on an authentic lightweight device
given that the SCD technique can potentially identify both the opcode and operands for a given
device and ISA. To perform the attack, as shown in Table 2, the adversary needs to collect the power
signature during runtime. If the device is designed to run some add-on software, the signature can
be collected during the boot process to separate firmware signature from the noise generated by
other programs. Given the firmware complexity and a satisfactory amount of power side-channel
data from the target device, the extracted instructions can be sequentially placed to generate the
cloned control flow and firmware image. For reverse-engineering accuracy, we assume that the
target device model and instruction set architecture is known to the attacker and the adversarial
model for instruction profiling from the power leakage information is sufficiently equivalent to
that of the target device. Also, by employing the covariate shift adaptation technique discussed in
Section 5.2, the adversary can extract distinct and non-varying features from the adversarial power
signature model and focus only on selective features making the reverse-engineering attack more
efficient.
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Further, reverse-engineering of firmware or software for piracy or copyright analysis is common
in industry. For example, a company may want to know whether its software IP is cloned by
competitors or not. Even though the firmware in competitor’s devices is encrypted in the temper-
resistant memory, an instruction-level SCD can recognize the behavior of decrypted code. That is,
a security engineer can use the instruction-level SCD to perform reverse-engineering of software
running on the competitor’s device for verification of software piracy.

4.3 Hardware-Firmware Co-Attestation

To ensure the integrity of an IoT network, all associated devices and firmware residing in them
need to be authentic (not counterfeit), and malware-free. Further, to avoid any adversarial im-
personation [15], e.g., as in the case of relay attacks, a device and its firmware can be bound to-
gether to be considered as a unified identity. The proposed fine-grained SCD method can offer a
hardware-firmware co-attestation technique for ensuring the authenticity of both the device and
firmware or detecting counterfeit device and firmware. The idea behind it is that every hardware
device running the same authentic firmware generates a similar but unique power signature due
to manufacturing process variation, runtime conditions, and process data and workload. It should
be noted that the generated in-field power signature is often too noisy to be uniquely identified
by the attester using only regular template matching techniques. A well-designed SCD (similar to
the one described in Section 3) can be potentially implemented to extract distinct and non-varying
features. For this, one needs to identify the features that are much less susceptible to noise and
possible covariate shift. If noise reduction and covariate shift adaption (discussed in Sections 5.1
and 5.2) are well applied, the detection error due to environmental noise can be reduced.

To perform a hardware-firmware co-attestation, the original equipment manufacturer (OEM)
is required to collect and store the power signature of the authentic device with the legitimate
firmware at the beginning of the operational lifetime. During in-field operation, test signature can
be collected and verified against the initially obtained data. If any element of the system (i.e. either
the hardware device or the firmware) is compromised, the power signature will not remain the
same and the unified attestation will no longer be valid. A further analysis of the signature to dis-
sect the program into sequential instructions can lead to identifying whether the firmware is com-
promised (through unrecognized instruction/control flow) or the hardware is under attack, as sum-
marized in Table 2. This approach can be further extended for developing a system-level mutual
authentication technique [26] utilizing additional hardware-based IDs and obfuscated firmware.

4.4 Detecting Meltdown and Spectre Attacks

Two major hardware flaws in modern CPUs, called Meltdown and Spectre, were revealed in
January 2018 [43]. These two bugs allow an attacker to access sensitive data stored in the memory
without any log records. It impacts almost every CPU such as Intel, AMD, and ARM processors
built in the past 10 years meaning that a huge number of computers, smartphones, and cloud
servers currently in use are significantly vulnerable to these two security concerns. Although the
software patch for Meltdown, called KAISER [25], is currently available, it still has limitations:
The software patch leaves a small amount of privileged memory exposed in the user space. If the
hardware exploits, namely, out-of-order executions and speculative branch predictions used by
the two attacks, need to be addressed, the performance may decrease by 30%. Since these flaws are
rooted in the hardware itself, the fundamental solution is to replace the vulnerable modules with
updated (redesigned) hardware. However, it is extremely expensive, time-consuming, and practi-
cally infeasible to upgrade all vulnerable hardware. Thus, detecting and preventing Meltdown and
Spectre attacks is necessary keeping lowest possible cost and performance degradation in mind.
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The fine-grained SCD framework has the potential to detect both Meltdown and Spectre attacks,
before the completion of attacks, given that it is adapted and optimized for commodity processors.
If the attacks are detected, termination of the infected application and refreshing memory prevents
an attacker from obtaining confidential information. Spectre attack [39] exploits speculatively exe-
cuted indirect branch instructions which should not have been executed during a correct program
execution, with following transient instructions which transmit secret data via microarchitectural
covert channels (e.g., cache timing side channel). The branch predictor directs the control flow to
the transient instructions which request an access to the private data that is temporarily stored
in the cache until the process redirects to normal control flow reverting the previous state before
execution of the indirect branch instruction. Using cache timing attack (e.g., Flush+Reload attack
[74]), the dump of data can be extracted. In order to detect the Spectre attack, two loops for the
setup and cache timing attack should be identified by a SCD. The setup loop consists of iterative in-
direct branch instructions that mistrain the branch predictor so that it will later make an erroneous
speculative prediction. The loop for the cache timing attack also consists of the same instructions
to request access to the secret data. Since these two loops are a deviation from the normal control
flow, they can be detected easily by a fine-grained CFI technique such as our proposed SCD as well
as by a course-grained CFI such as EDDIE [51].

Meltdown attack [44] exploits the out-of-order execution of transient instructions stored in the
reorder buffer for raising an exception caused by illegal memory access. The transient instructions
to access inaccessible pages such as kernel pages are still executed in the small window time be-
tween the illegal memory access and the raising of the exception. An attack can extract the dump
of inaccessible memory using cache timing attack such as Flush+Reload attack. Since our SCD,
as well as course-grained CFIs, can identify the cache timing attack, Meltdown can be detected as
well.

4.5 Miscellaneous Applications

A side-channel-based instruction disassembler and its variants can offer several additional appli-
cations for IoT as well as traditional computing domain. A key application resides in IP/IC fin-

gerprinting and watermarking. Similar to the hardware-firmware co-attestation technique, a SCD
can utilize the power traces to extract distinct features that essentially could be used as an active
fingerprint or passive watermark to the hardware device or the firmware IP under consideration
[47]. A similar approach can also be explored for digital rights management (DRM) for the soft-
ware/application running on an embedded device.

5 LIMITATIONS AND FUTURE RESEARCH

In this section, we discuss the open issues and challenging problems of existing side-channel mon-
itors and address high-level approaches for future research directions.

5.1 Increased Complexity

Following the advancement trend, it is expected that the hardware of used for IoT and embedded
applications will get more powerful and complex over the time, making it possible to run more so-
phisticated programs and with higher data collection and processing capabilities. For instance, an
embedded system in a smart-home collects data from many sensors and processes it continuously
to make a critical decision, such as applying emergency alarms and activating water sprinklers in
case of a fire, based on gathered information. However, the collected data can contain an error due
to failing sensors or injected malicious codes leading to a potential inaccurate decision. It requires
that the system should have verification methods to decide whether the data is correct or not. If the
data validation is achieved by only software, the control flow of the software generally becomes
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so significantly complicated that fine-grained CFI methods become infeasible. Furthermore, since
an advanced electrical device requires a high-performance computing unit to support the com-
plex processing, it may contain deep pipelining, multiple cores, and a large ISA. For such cases,
the side-channel templates corresponding to the control-flow states at the granularity of instruc-
tion level would grow to tremendous complexity. Therefore, a fine-grained CFI method using only
side-channel leakage may become infeasible to detect malicious codes.

The fine-grained CFI method with internal hardware monitors and sensors such as hardware
performance counters or debug interfaces may become beneficial in such cases. For example, the
fine-grained control-flow graph with the granularity of instruction level can be replaced with
hierarchical control-flow graphs that have module-level states consisting of additional substates
corresponding to instructions. As a hybrid approach, the higher-level control-flow integrity can
be validated using built-in hardware monitors such as performance counters and the lower-level
control-flow integrity in each module-level state can be validated by the fine-grained CFI monitor
simultaneously to provide the accuracy in the face of increasing complexity.

5.2 Addressing Covariate Shift Problem

In real life, an embedded device undergoes different operating conditions (e.g., power supply and
temperature variation) as well as runs different programs with numerous instruction combina-
tions. The collected power traces for disassembly from a real device in the field, therefore, may
be significantly different than that of an experimental device where the data is collected in a con-
trolled environment with known programs and instructions. This can lead to a poor recognition
of instructions from an in-field device using an experimentally trained classifier due to the co-

variate shift problem. This problem arises due to the difference in the probability distribution of
training data (from the experimental device) and testing data (from the in-field device) such that
Prte (x ) � Prtr (x ) even if the conditional probability of classes given training data is the same as
the conditional probability of classes given testing data (Pr[C |x tr ] = Pr[C |x te ]) [64]. This problem
also occurs in power measurement at different times or across devices and may come in the form
of simple DC offset, significant magnitude and phase changes, or random noise [12].

5.2.1 Covariate Shift Adaptation. Keeping the covariate shift problem in mind, a more rigorous
sample acquisition can be done to highlight distinct features. For example, in the case of our SCD
in Section 3.2.2, the collected dataset is extended from 2,500 traces to 5,700 traces to estimate non-
varying feature points against the training programs with the following covariate shift adaptation;
the KL threshold for within-class divergence calculation can be adjusted to a lower limit for a
finer characterization. Additionally, distinct and not-varying feature points between two different
classes are normalized in order to reduce the range of shifted space. Park et al. [54] showed that
the successful recognition rate of classification between ADC and AND instructions when the
covariate shift adaptation method is applied can be increased by 73.5%.

5.2.2 Covariate Shift Caused by Different Devices. The covariate shift problem also occurs in
measured powers from different devices that are the same model as the trained device. It exhibits
similar challenges to that caused by different programs. Based on the template from a trained de-
vice, the measurements from other devices can be adjusted upon testing and validation. In short,
covariate shift problems caused by both different programs and devices can be minimized by ex-
panding sample space and searching not-varying feature points with normalization.

However, the requirement of increased sample space to adapt the covariate shift creates addi-
tional complexity in terms of sample acquisition, data processing, and obtaining fine-tuned signa-
tures. Further, it requires an extensive amount of validation and adjustment from a large number
of devices which subsequently makes the process costly and time-consuming. Additionally, the
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extraction of finer features requires high-end acquisition hardware for collecting noise-less fine-
grained data. It eventually makes the current adaptation scheme somewhat infeasible for low-cost
applications.

5.2.3 Aging-Induced Shift. Similar to covariate shift and noise, aging-induced shifting and SNR
variation introduces additional challenges for data acquisition, model building, and verification.
In addition, gate/circuit-level countermeasures against traditional power side-channel attacks [76]
also suffer from aging. The predictive aging models [52, 69] can potentially be utilized to find
statistical correlation, if any, for the complete system and reduce the shift in the side-channel
profile during post-processing.

5.3 Noise Reduction

Signal-to-noise (SNR) of side-channel leakage affects the accuracy of fine-grained CFI monitors
significantly. Collected power or EM signals include noise from measurement instruments, envi-
ronmental components, temperature variation, and so on. In order for the fine-grained CFI monitor
to estimate op-codes and operands in an assembly code on a complex SoC processor, each power
consumption trace/profile corresponding to the op-code and operands should be extracted from a
raw (original) power trace that is measured using an oscilloscope. That is, pure side-channel signals
without noise should be preprocessed for high accuracy before classification or estimation.

Blind source separation (BSS) such as independent component analysis [41] or singular spec-
trum analysis [58], i.e., the decoupling of unknown signals that have been mixed in an unknown
way, can be exploited to simultaneously extract independent signals with reduced noise from the
leakage. Each independent signal is used to estimate the opcode or operands. In addition, since
such a signal does not depend on devices and temperature, the covariate shift problem in a non-
stationary environment can be solved.

5.4 Data Acquisition and Measurement

A higher volume of data for training (or profiling) is required for high accuracy. In addition,
the number of classes depending on instruction set architecture, the depth of the pipelining,
and the number of CPU cores (e.g., # of classes= # of instruction× # of depth× # of cores) affects the
volume of the training data. This results in an increased cost and delay as collecting side-channel
leakage from state-of-the-art microcontrollers with measurement instruments (e.g., oscilloscope)
is quite time-consuming. For a fast acquisition of side-channel leakage, the bandwidth speed
between the target device and the control PC and between the measurement instrument and the
control PC needs to be improved. For example, PCI-express-based measurement instruments such
as the NI PXI platform [36] support automatic and high-performance measurement setup.

5.5 Limitation of Physical Access

To measure power or EM radiation, the target device has to be physically accessed or at least ac-
cessed within its near field. This physical one-spot access has limitation to simultaneously monitor
multiple IoT devices connected to a network such as a smart home. Remote and parallel measure-
ment methods are required in order to observe multiple IoT devices simultaneously and reduce
economical cost (e.g., it is expensive that a high-performance instrument measures a side-channel
leakage of a low-cost device).

For this open issue, a dedicated analog device [45] to generate an RF signal including the side-
channel signal as well as sending data may be a good candidate. The side-channel signal from the
collectively accumulated signal/data is extracted at the monitor and based on the side channel, the
state of IoT devices can be estimated. Since the monitor can receive RF signals from multiple IoT
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Table 3. Challenging Problems and Future Research Directions

Challenging Problem Description Research Direction

Increased Sophisticated software has Hierarchical or Hybrid

Complexity complicated CFG. Fine-Grained CFI

Covariate Shift In-field devices produce different side-channel Distinct and Not-Varying

signatures than training devices. Feature Selection

Noise Reduction Most side-channel leakage is affected by noise. BSS

Low SNR results in low accuracy. Signal Processing

Data Acquisition A high volume of training data is required High-Performance

for high accuracy or complicated processors. Acquisition Platform

Physical Access Physical one-spot access has limitation to RF Side-Channel

simultaneously monitor multiple IoT devices. Generator

devices remotely, it can monitor multiple IoT devices simultaneously. Table 3 shows the summary
of challenging problems and future research directions.

6 CONCLUSION

With extensive concerns about the security of modern computing devices, it is imperative that
hardware-based monitors be developed and deployed to thwart various cyber attacks. Our analy-
sis shows that the existing hardware-based monitors, especially focusing on side-channel leakage-
based control flow and instruction checking, require further improvement. In this regard, we
illustrate a power-based side-channel instruction-level disassembler. A few simple case studies
show the potential applications of the proposed disassembler. Finally, the challenging problems of
existing side-channel CFI methods and high-level solutions are highlighted.
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