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Abstract—The security of a system-on-chip (SoC) can be com-
promised by exploiting the vulnerabilities of the finite state
machines (FSMs) in the SoC controller modules through fault
injection attacks. These vulnerabilities may be unintentionally
introduced by traditional FSM design practices or by CAD tools
during synthesis. In this paper, we first analyze how the vulner-
abilities in an FSM can be exploited by fault injection attacks.
Then, we propose a security-aware FSM design flow for ASIC
designs to mitigate them and prevent fault attacks on FSM. Our
proposed FSM design flow starts with a security-aware encod-
ing scheme which makes the FSM resilient against fault attacks.
However, the vulnerabilities introduced by the CAD tools can-
not be addressed by encoding schemes alone. To analyze for
such vulnerabilities, we develop a novel technique named ana-
lyzing vulnerabilities in FSM. If any vulnerability exists, we
propose a secure FSM architecture to address the issue. In this
paper, we mainly focus on setup-time violation-based fault attacks
which pose a serious threat on FSMs; though our proposed flow
works for advanced laser-based fault attacks as well. We com-
pare our proposed secure FSM design flow with traditional FSM
design practices in terms of cost, performance, and security. We
show that our FSM design flow ensures security while having a
negligible impact on cost and performance.

Index Terms—Fault injection attacks, finite state machine
(FSM) integrity analysis, secure FSM architecture, security
design rules.

I. INTRODUCTION

D IFFERENT hardware-based attacks, e.g., side channel
attacks using power and timing analysis, exploitation

of test and debug structures, and fault injection attacks have
been demonstrated to compromise the security of a system-on-
chip (SoC). These attacks can effectively bypass the security
mechanisms built in the software level and put systems at
risk. Among these attacks, fault injection poses a particularly
serious threat. During fault attacks, an attacker injects faults
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to produce erroneous results and then analyzes these results
to extract secret information from an SoC [1]. Over the past
decade, fault injection attacks have grown from a crypto-
engineering curiosity to a systemic adversarial technique [2].
However, most of the research on fault attacks are concentrated
on analyzing the fault effects and developing countermeasures
for fault injection on datapaths. Finite state machines (FSMs)
in the control path are also susceptible to fault injection
attacks, and the security of the overall SoC can be com-
promised if the FSMs controlling the SoC are successfully
attacked. For example, it has been shown that the secret key of
RSA encryption algorithm can be detected when FSM imple-
mentation of the Montgomery ladder algorithm is attacked
using fault injection [3]. Therefore, it is also extremely impor-
tant to understand how fault injection attack works in an FSM
and develop proper countermeasures to protect against fault
attacks.

Fault-tolerant FSM has been extensively studied for space-
based applications [1], [4]. The fault model used for such
applications is typically based on single fault event caused
by radiation. Since these faults are random, they do not
fit into threat model of fault injection attack caused by an
intelligent attacker who can precisely inject faults to exploit
FSM vulnerabilities. There are few works that try to iden-
tify and address vulnerabilities of FSM to fault injection
attack. Sunar et al. [3], Krasniewski [5], Farahmandi and
Mishra [6], and Baranov et al. [7] have proposed linear error
detection techniques (e.g., triple modular redundancy, parity
prediction, etc.) to protect the FSM from fault injection attacks.
However, the proposed techniques suffer from large area over-
head (�200%) and assume specific error models that will not
work for other adversarial models [8]. As alternatives to lin-
ear codes; nonlinear [9], multilinear [10], and multirobust [8]
codes have been proposed to improve the protection of crypto-
graphic devices against fault injection attacks. However, none
of these methods address the vulnerabilities introduced by syn-
thesis process, which makes them inadequate in protecting the
FSM from fault injection attacks.

It has been shown that synthesis tools can introduce
security risks in the implemented FSM by inserting addi-
tional don’t-care states and transitions [11], [12]. Dunbar
and Qu [11] proposed architectural changes in the FSM to
address the vulnerabilities introduced by don’t-care states and
transitions. Here, a modified T flip-flop-based design which
prevents normal states to access protected states (states which
grant critical/secure functionality) was proposed. However,
this solution fails to provide adequate protection against fault
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Fig. 1. Security-aware FSM design flow. The violet marked steps are the three
additional steps introduced in the current FSM design flow by our approach.
The dotted line represents that the security-aware FSM architecture needs to
be applied only when the security vulnerabilities cannot be addressed by the
security-aware encoding scheme.

injection attack as it does not address the unauthorized state
transition between protected states. Moreover, this architecture
has adverse effects on timing, test coverage, and verification
(e.g., equivalence checking) and therefore, is not suitable for
industrial ASIC design flow.

In this paper, we propose a security-aware FSM design flow
for ASIC designs to make the FSM fully secured against
fault injection attacks. Our proposed flow introduces three
additional steps into the current FSM design flow: 1) security-
aware encoding of state assignments; 2) vulnerability anal-
ysis of synthesized FSM; and 3) security-aware architecture
development for FSM design. An overview of our proposed
security-aware FSM design flow is shown in Fig. 1. Note that,
the security-aware FSM architecture needs to be applied only
when the security vulnerabilities cannot be addressed by the
security-aware encoding scheme.

We make following major contributions.
1) We investigate the traditional FSM design practices and

demonstrate that these design practices (e.g., encoding
schemes) can introduce vulnerabilities in the FSM. To
the best of our knowledge, this is the first time that the
security of different encoding schemes (binary, one-hot,
and gray) have been examined and compared.

2) We investigate the error detection-based fault tolerant
FSM architectures and demonstrate with experimental
results that these approaches cannot provide adequate
protection to FSMs against fault injection attacks.

3) We propose two security-aware FSM encoding schemes;
one based on securing protected states and the second
based on securing protected transitions. The elegance
of our proposed encoding schemes is that they inher-
ently make the FSM more resistant to fault attacks
without the need of any extra circuitry. This differen-
tiates our proposed schemes from error detection-based
approaches that require complex logic for detecting
errors. We also validate with experimental results that
most security vulnerabilities can be addressed by our
proposed encoding schemes.

4) We propose a technique, called analyzing vulnerabilities
in FSM (AVFSM) to quantitatively analyze and evaluate
how susceptible an FSM design is against fault injection
attacks. To the best of our knowledge, this is the first sys-
tematic approach to analyze such vulnerabilities present
in an FSM.

5) We propose a security-aware FSM architecture to
address the vulnerabilities introduced by the synthesis
process (these vulnerabilities are detected using AVFSM

approach) and to protect the FSM from advanced laser-
based fault injection attacks.

6) We demonstrate potential vulnerabilities to fault attacks
in five controller benchmark circuits. We also compare
our proposed security-aware FSM design flow with tra-
ditional FSM design practices in terms of security, cost,
and performance.

The remainder of this paper is organized as follows.
Section II provides a background on fault tolerant FSM design.
Section III presents preliminaries and definitions that we use
in this paper. Section IV shows how fault injection attack
can be performed against FSMs using a motivational exam-
ple. Section V presents our threat model. Section VI presents
the vulnerabilities introduced by traditional and error detec-
tion code (EDC)-based FSM design practices. Section VII
discusses our proposed security-aware FSM design flow.
Section VIII presents our results. Finally, Section IX concludes
this paper.

II. RELATED WORK

Sunar et al. [3] has proposed linear error detection tech-
niques to protect the FSM from fault injection attacks.
However, as described in Section VI-A, linear EDC-based
techniques do not take into account the nonuniform path delay
distribution of an FSM or the vulnerabilities introduced by
synthesis tools and therefore, are susceptible to fault injec-
tion attacks. We demonstrated with experimental results in
Section VIII-D that these techniques are vulnerable to set-up
time violation-based fault injection attack.

Karpovsky and Taubin [9] proposed nonlinear EDCs to min-
imize the fraction of undetectable errors. Contrary to linear
codes, the error detection probability of nonlinear codes is
dependent on state encoding. Therefore, if an adversary knows
the states of FSM then, he/she can compute an undetectable
error pattern and inject an undetectable fault. Thus, the secu-
rity of this coding scheme mainly depends on the assumption
that the attacker cannot observe the next state values of the
FSM in the same clock cycle as fault injection [3]. However,
this assumption is not valid as an attacker can make intelligent
guess about the next state for a particular FSM. For example,
in the AES controller FSM (see Section VIII-A), an attacker
can guess the Initial Round and Final Round by observing
when the encryption module loads the input plaintext and
when the output ciphertext in available.

Akdemir et al. [13] proposed to address the limitations of
applying nonlinear codes in FSM by embedding randomization
to achieve unpredictability and uniformity. Although it can
provide some guarantee to detect fault injection attacks, the
following challenges exist in their approach.

1) It may require impractical area and delay overhead for
many applications (see Section VIII-E).

2) It requires the implementation of a tamper-proof clock
and random number generator [14]. These requirements
are quite challenging and expensive to meet when con-
sidering the fact that the attacker has physical access to
the device.

3) It essentially push the security threat from the FSMs
to the decoder circuit which generates control signals
based on the current state and requires visibility of the
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(a) (b)

Fig. 2. (a) High-level diagram of SHA-256. (b) FSM of SHA-256 digest
engine. The red marked states represent protected states of SHA-256 FSM.

state. Therefore, the bare form of the state and output
control signals become vulnerable points for possible
attacks [15].

III. PRELIMINARIES AND DEFINITIONS

An FSM is formally defined as a 5-tuple (S, I, O, ϕ, λ),
where S is a finite set of states, I is a finite set of input sym-
bols, O is a finite set of output symbols, ϕ : S× I→ S is the
next-state function and λ : S× I→ O is the output function.

For convenience, an FSM is typically represented as a
directed graph where each vertex represents a state s ∈ S and
an edge represents the transition t = T(si, sj) from current
state si to its next state sj. This graph is referred to as a state
transition graph (STG). In the STG each state can be accessed
from a set of states which we define as the accessible set of
states

A(x) = {sj | sj is accessible from si}. (1)

In this paper, we define two more sets, P and L, which are
both specified by the designer. P is the set of protected states
and L is a set of authorized states that are allowed to access a
protected state p, that is A(L) = {p | p ∈ P}. If any state p is
accessed by any state apart from states in L, then the security
of the FSM can be compromised.

In the behavioral specification of the FSM, there are don’t-
care conditions where the next state or the output of a
transition are not specified. During the synthesis process, the
synthesis tool tries to optimize the design by introducing deter-
ministic states and transitions for the don’t-care conditions.
Let us consider the FSM F′ implemented by the synthesis
tool from the behavioral description of the FSM F. Let, S and
S′ represent the set of states and T and T ′ represent the set
of transitions in F and F′, respectively. The set of don’t-care
states and transitions (SD and TD) introduced by the synthesis
process are defined as follows:

SD =
{
s′ |( s′ ∈ S′) ∩ (s′ /∈ S)

}

TD =
{
t′ | (t′ ∈ T ′) ∩ (t′ /∈ T)

}
. (2)

Table I presents the symbols and notations that we use
throughout this paper.

TABLE I
SYMBOLS AND NOTATIONS

IV. MOTIVATING EXAMPLE

In this section, we explore the possible fault injection attacks
against an FSM and show how these attacks can compro-
mise the security of the overall system. We use the controller
circuit of an SHA-256 digest engine [16] as an example to
demonstrate the feasibility and effectiveness of fault attacks.
The FSM in the controller circuit of SHA-256 digest engine
is shown in Fig. 2(b). The FSM is composed of 7 states:
“Reset,” “Data Input,” “Padding,” “Block Process,” “Block
Next,” “Valid,” and “Error.” Each of these states controls spe-
cific operations in the SHA-256 digest engine. The digest
algorithm operates on two registers, w[0..64] which is respon-
sible for loading the message and h[0..7] which stores the
intermediate digest results. These two registers are initialized
during Reset state. The final digest (H) will be latched into the
result register in Valid state. In our SHA-256 FSM example,
Valid is a protected state and Block Next is the authorized
state to access the protected state Valid.

If an attacker can successfully inject a fault in the FSM to
get access to specific states without going through the valid
state transitions, it can compromise the security of the SHA-
256 digest engine. We will demonstrate two such attacks in
the following.

1) During the Data Input state, the message M is loaded
to register w[0..15]. These values are used in a sub-
sequent operation to compute w[16..63], h[0..7], and
digest H. Therefore, if an attacker can inject fault to
bypass Data Input state, then M will not be loaded into
register w[0..15]. Therefore, H will be computed from
the initialized value of w[0..15]. The outcome of this
attack would be the same hash value as computed for
any message. This attack would compromise the colli-
sion resistance property [17] of the digest engine i.e., for
any two different messages m1 and m2, their hash value
would be same, hash(m1) = hash(m2). A digital signa-
ture algorithm based on hash functions are particularly
vulnerable to hash collision attacks. In [18], authors have
used a hash collision attack to produce a rogue certificate
authority.

2) When the hash value of the last message block is calcu-
lated, the FSM moves to Valid state and the digest value
H is captured by the result registers. Now, if an attacker
can inject fault to bypass Block Process and/or Block
Next states, then instead of H, initial values of h[0..7]
would be captured by the result registers and would be
published as the digest value. This attack would compro-
mise both the preimage resistance [17] and the collision
resistance property of the digest engine. A successful
execution of this attack would allow the adversary to
bypass the authentication mechanism provided by the
digest engine.

Authorized licensed use limited to: University of Florida. Downloaded on July 12,2021 at 19:47:48 UTC from IEEE Xplore.  Restrictions apply. 



1006 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

V. THREAT MODEL

In this section, we identify how the vulnerabilities are
introduced in the FSM and how these vulnerabilities can be
exploited to compromise the security of an SoC. We also
briefly describe the potential adversaries, their objectives, and
their capabilities. In our threat model, we have considered
fault injection attacks which create multiple bit flips and also
considered fault attacks performed by a focused laser beam.

A. Sources of Vulnerabilities

Most security vulnerabilities in an FSM are unintentionally
created by designer mistakes or by CAD tools. Traditional
FSM design practices are driven by cost and performance
while security is largely ignored. For example, FSMs are gen-
erally encoded in binary, gray or one-hot from the performance
perspective. In [12], it was shown that certain encoding
schemes are more susceptible to fault injection attacks.
Further, CAD tools can create additional vulnerabilities in an
FSM. For example, in the RTL specification of an FSM, there
are don’t-care conditions where the next state or the output
of a state is not specified. Synthesis tools optimize the FSM
design by introducing deterministic states and transitions for
don’t-care conditions. This can create a vulnerability in the
circuit by allowing a protected state to be illegally accessed
through the don’t-care states (SD) and transitions (TD).

B. Fault Injection Attack on FSM

In this paper, we focus on setup-time violation-based fault
attack. This attack violates the setup time constraint of state
flip-flops (FFs) to bypass a normal state transition and enter
a protected state. Setup time violations can be performed
by different fault injection methods, including overclock-
ing, reducing the voltage, and/or heating the device [19].
These types of attacks pose the most serious threat to an
FSM as they require relatively low-cost equipment and do
not necessarily need the complete knowledge of the FSM
design.

We illustrate the working principle of setup-time violation-
based fault attack using the example of the FSM of SHA-256
digest engine (shown in Fig. 2). Fig. 3(a) shows the distri-
bution of path delays located in the fan-in cone of the state
FFs of SHA-256 FSM under normal operating condition. The
path delays were extracted using the static timing analysis
(STA) from the gate-level implementation of the FSM (using
90-nm standard cell library). The delay distribution is shown
in the form of box-plot. It is clear from Fig. 3(a) that the
path delay distribution to the state FFs is nonuniform, mean-
ing that it is possible to inject fault that violates setup-time of
certain FFs (ones with longer path delay) while maintaining
setup-time of other FFs (ones with shorter path delay). Such
attacks are termed as biased fault attack [20]. For example,
when the FSM is operating with the clock period (Tclk) of
Tclk > 2.25 ns, no setup-time violation occurs in any state
FF. However, the setup-time of state FF1 can be violated by
operating the FSM with 2.05 ns < Tclk < 2.25 ns [1-bit fault
region shown by green marked area in Fig. 3(a)]. If Tclk is
further reduced (1.70 ns < Tclk < 2.05 ns), then setup-time

(a)

(b)

Fig. 3. Distribution of path delays located in the fan-in cone of the state
FFs of SHA-256 FSM (a) under normal operating condition and (b) for low
voltage corner condition. The green and purple marked areas represent the
1-bit and 2-bit fault regions, respectively.

of both state FF1 and FF0 will be violated [2-bit fault region
shown by purple marked area in Fig. 3(a)].

In some cases, e.g., in embedded systems, an attacker may
not have control over the clock signal. In such cases, the
attacker can reduce the supply voltage and/or increase the tem-
perature of the circuit to perform setup-time violation-based
fault attack. Fig. 3(b) shows the distribution of path delays
located in the fan-in cone of the state FFs of SHA-256 FSM
for low voltage corner condition. If we consider the operating
clock period to be 2.5ns, then under low voltage condition the
setup-time of both state FF1 and FF0 will be violated. This is
shown in 2-bit fault region shown by purple marked area in
Fig. 3(b). Therefore, biased fault attack can also be performed
by reducing the supply voltage and/or increasing the operating
temperature.

In summary, the nonuniform path delay distribution of an
FSM enables an attacker to violate setup-time of certain FFs
while maintaining setup-time of other FFs. Thereby allowing
the attacker to bypass normal state transitions and get access
to a protected state directly. Note that, it is also not feasible
to equalize the nonuniform path delay distribution of an FSM
using the limited sizes of buffer offered by a standard cell
library.

It is also possible to induce faults to flip bits in sections
of a circuit with a precisely focused laser beam. Although
such fault injection techniques require expensive equipment
as well as knowledge of the FSM design, our threat model
takes such attacks also into consideration. Note that our threat
model does not consider the fault attack scenario where an
attacker can individually set or reset a single FF without affect-
ing any other gates. Such, attacks are only possible through
focused ion beam (FIB) and those are out of scope of this
paper. The reason is that, an attacker with FIB capability would
directly probe the design to extract secret information rather
than inducing fault to cause information leakage.
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C. Potential Adversaries

For this threat model, we assume the adversary has physical
access to the device. The adversary can thereby manipulate the
clock signal, supply voltage, or operating temperature of the
FSM. This model is realistic for stolen devices and systems
or in the case of smart cards where clock and voltage may be
supplied by a malicious reader. Based on the capabilities of the
adversaries, we divide them into two adversarial categories.

1) Strong Adversarial Model: Here, the attacker knows
the state encoding and functionality of the FSM and
therefore, can mount precise glitching attacks [20]. The
attacker can obtain this information from an insider, by
espionage, or by reverse engineering. These adversaries
can also mount precise laser-based fault attack. Although
this class of attacks is less likely, they pose a greater
threat as they allow one to precisely inject fault to gain
access to a protected state.

2) Weak Adversarial Model: In this case, the attacker does
not know the state encoding nor the functionality of the
FSM. Here, the attacker will try to inject random faults
in the FSM in the hope of gaining access to a protected
state. Although these attacks pose a less serious threat,
they are more likely to be performed.

VI. LIMITATIONS IN EXISTING FSM DESIGN FLOW

In this section, we describe how vulnerabilities are intro-
duced by traditional FSM encoding schemes. We also present
the limitations of EDC-based approaches in protecting the
FSM from fault attack.

A. Traditional FSM Encoding Practices

Encoding the state assignments in FSMs is traditionally
done based on design constraints such as area, power, and
delay. Designers generally choose between binary, one-hot,
and gray encoding to encode the FSMs. None of these encod-
ing schemes take security into consideration and thereby, can
introduce vulnerabilities in the FSM. In this section, we com-
pare traditional encoding styles from security and performance
points of view.

1) Binary Encoding: In binary encoding scheme, states are
encoded as a binary sequence where the states are numbered
starting from 0 and up. The number of state flip-flops (FFS), q,
required for binary encoding scheme is given by q = log2(n);
where, n is the number of states. From this equation, it is evi-
dent that binary encoding scheme requires minimum number
of state FFs. Binary encoding scheme ensures maximum uti-
lization of state FFs, but it requires complex combinational
logic for decoding each state. Therefore, binary encoding
scheme is better suited for FSM with a fewer number of
states [21]. However, in terms of security, the binary encod-
ing scheme makes the FSM more susceptible to fault injection
attack. We demonstrate this vulnerability using the FSM of the
SHA-256 digest engine.

The binary encoding for SHA-256 FSM is shown in
Table II. One possible attack is shown in Fig. 4(a). During
state transition from Padding (100) to Block Process (010), it
is possible to inject fault and bump into protected state Valid
(110). To successfully inject this fault, the attacker needs to

TABLE II
DIFFERENT ENCODING SCHEME FOR SHA-256 FSM

(a) (b) (c)

Fig. 4. Fault injection attack on the FSM of SHA-256 digest engine.
(a)–(c) Fault injection attack on FSM encoded in binary, one-hot and
Hamming code (7,4), respectively. The red marked bits represent the state
FFs for which setup time needs to be violated and the green marked bits
represent the state FFs for which setup time needs to be maintained.

violate setup time of state FF2 [the leftmost bit, representing
FF2, is marked in red in Fig. 4(a)] while maintaining setup-
time of state FF1 [the middle bit, representing FF1, is marked
in green in Fig. 4(a)].

2) One-Hot Encoding: In one-hot encoding, only one bit
of the state variable is “1” while all other state bits are zero.
One-hot encoding requires as many state FFs as the number
of states, and therefore, one-hot encoding requires more state
FFs than binary. However, one-hot encoding possesses simpler
combinational logic for decoding each state and, therefore, is
more suitable for FSMs with more states. From the security
perspective, it is also inherently less vulnerable to fault attacks.
We will demonstrate this using the FSM of the SHA-256 digest
engine. The one-hot encoding for SHA-256 FSM is shown in
Table II. During state transition from Padding (0010000) to
Block Process (0000100), it is not possible to inject faults and
bump into protected state Valid (0100000). The reason is that
in order to go to Valid state, the state FF(6) needs to be 1;
however, during the other state transitions, this bit remains
unchanged as this bit is dedicated for Valid state. Therefore,
setup-time violation-based fault attack cannot be applied to
change state FF(6) bit to 1. This property makes the one-hot
encoding inherently more secure against fault attacks.

Note that, one-hot encoding could result in many don’t-care
states. If any of these don’t-care states has access to a protected
state as a result of synthesis, then there will be a vulnerability
in the FSM. For example, as shown in Fig. 4(b), the don’t-care
state “0000000” has access to Valid state. Therefore, during
state transition from Padding to Block Process, an attacker can
inject a fault to bump into the don’t-care state and then access
the Valid state. Hence, there can still be vulnerabilities even
in one-hot encoded FSMs.

Note that gray encoding is also used in traditional FSM
design. Gray encoding has similar security characteristics to
binary encoding scheme and therefore, we did not elaborate
on gray encoding scheme.
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B. EDC-Based Approaches

Previously proposed fault tolerant FSM architectures [3], [5]
are based on linear EDC. The basic idea of these approaches
is to encode the FSM’s state using EDCs and then detect any
fault by checking the parity bits. Linear EDCs are denoted as
[n, k, d] where n is the code length, k is the message length
and d is the minimum Hamming distance between any two
code words. A linear EDC can detect up to d − 1 errors.
Sunar et al. [3] and Krasniewski [5] assumed that the EDC-
based approach would force the attacker to be very precise
when changing certain bits; otherwise the attack would be
detected. Therefore, flipping multiple targeted bits without
changing other bits would be a daunting task.

The main limitations of EDC-based approaches are: 1) these
approaches do not take into account biased fault model which
allows an attacker to exploit the nonuniform path delay distri-
bution of an FSM to inject multiple bit flips and 2) none of
the EDC-based approaches address the vulnerabilities intro-
duced by the synthesis tool. We illustrate these limitations by
applying an EDC scheme on our SHA-256 FSM. Here, we
use the Hamming (7,4) error detection approach [22], though
any EDC-based approach will share the same limitations.

The Hamming (7,4) encoding for SHA-256 FSM is shown
in Table II. Note that, there are 16 valid states in Hamming
(7,4) code; however, only 7 are used to encode SHA-256
FSM. Therefore, there are 9 valid don’t-care states which
may pose a threat as these states can bypass the error detec-
tion mechanism. We illustrate the limitation of Hamming (7,4)
code using the following two examples. During state transition
from “Reset” (1110000) to Error (0001111), it is possible to
inject fault and bump into protected state Valid (10100101).
To successfully inject this fault, the attacker needs to vio-
late setup time of state FF(1), FF(3) and FF(5) [marked in
red in Fig. 4(c)] while maintaining setup-time of rest of the
state FFs [marked in green in Fig. 4(c)]. Also, during this
transition, one can inject a fault to bump into the valid don’t-
care state “0110011” and, if this don’t-care state has access to
Valid state, then it is a security vulnerability. The above exam-
ples illustrate that the EDC-based approaches cannot provide
adequate protection to FSMs against fault injection attacks.

VII. SECURITY-AWARE FSM DESIGN FLOW

An overview of our proposed security-aware FSM design
flow to protect the FSM is shown in Fig. 1. Our proposed
flow starts with designing the FSM RTL with security-aware
encoding. We propose two encoding schemes which make the
FSM inherently fault tolerant with little or no additional cost
and performance overhead. However, these encoding schemes
cannot address the vulnerabilities introduced by the synthe-
sis process and cannot provide protection against advanced
laser-based fault attacks. We analyze the synthesized FSM
netlist for potential vulnerabilities using our proposed AVFSM
technique. If any vulnerabilities exist or protection against
laser-based fault attacks is required, we propose a security-
aware FSM architecture to mitigate them. Our proposed FSM
architecture ensures that protected states are only accessed
from authorized states and they cannot be accessed via unau-
thorized states and don’t-care states. Therefore, our proposed
FSM architecture provides protection against laser-based fault

Algorithm 1 Secure Encoding—Scheme I
1: procedure
2: Input: Protected States P, Normal States N, Initial State I
3: Output: FSM Encoding Map, SEN
4: P← |P|, N ← |N|
5: l = P+ log(N) \\Encoding Bit Length
6: for Pi ∈ P do
7: Ei = OneHotEncoding(i, P)||(00..0)l−p \\concat (l-p) zeros with one-hot

encoding
8: SEN.add(Pi, Ei)
9: end for

10: for Ni ∈ N do
11: Ei = binaryEncoding(i, N)||(00..0)l−N)
12: SEN.add(Ni, Ei)
13: end for
14: SEN.add(I, (00..0)l) \\initial state
15: return SEN
16: end procedure

attacks and also addresses the vulnerabilities introduced by
CAD tools.

A. Security-Aware FSM Encoding

In this section, we present two security-aware FSM encod-
ing techniques. The first approach (Scheme I) is based on
a conservative model where we make the protected states
resilient to fault attack during all transition. However, fault
injection during certain transitions may not create any secu-
rity issues. In our second approach, we make the protected
states resilient to fault attack during state transitions which
cause security concerns.

Scheme I: One-hot encoding is more resilient to fault injec-
tion attacks in comparison with other encoding styles as
discussed in Section VI-A. Our first encoding scheme exploits
the benefits of one-hot style while reducing the number of
don’t-care states. Algorithm 1 shows the proposed encoding.
The algorithm takes as input from the designer, the states
specified as three different categories: the initial state, normal
states, and protected states. Our primary goal is to make the
protected states more resilient against fault attacks. Therefore,
the algorithm uses one-hot scheme for protected states while it
uses binary scheme for normal states. If the FSM contains one
initial state, N normal states and P protected states, the algo-
rithm uses log(N)+P bits for encoding (line 5). The algorithm
dedicates P upper bits to one-hot scheme while it pads zero
for the rest of log(N) bits in order to encode a protected state
(lines 7–9). To encode a normal state, the algorithm pads zero
for the N upper bits and uses binary encoding for log(N) lower
bits (lines 10–12). It always encodes the initial state with all
zeros (line 13). This encoding approach decreases the number
of don’t-care states (as compared to one-hot) while making
sure that it will be impossible for an attacker to access to
a protected state from a normal state with fault attacks since
during normal state transitions, P upper bits are fixed to zeros.

Example 1: The FSM shown in Fig. 2(b) can be
encoded with Algorithm 1 as following: Reset = “00000,”
Block Process = “00001,” Block Next = “00010,”
Padding = “00011,” Error = “00100,” Data Input = “01000,”
Valid = “10000.”

Scheme II: Note that, every access to a protected state from
an unauthorized state does not necessarily introduce a secu-
rity threat based on the attack objective. For example, it can be
observed from Fig. 2(b) that an unauthorized access to Data
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Input state from Block Process may not be a security threat
if the attacker’s objective is to bypass the digest operation.
In other words, an FSM may be secured against fault attacks
if the state encoding provides protection for only prohibited
transitions instead of every transition to the protected states.
This property enables us to introduce another FSM encod-
ing scheme which is similar to binary scheme, but also tries
to reduce the number of don’t-care states that exist in the
previously proposed encoding (Algorithm 1).

Algorithm 2 shows the second proposed encoding approach.
The algorithm takes an initial state, state names, and a list of
the prohibited transitions as inputs and generates an optimal
length encoding as output. A list of prohibited transitions
includes state(s) that should be prohibited during a transition
from state u to v using fault attacks. Moreover, it can contain
information about which transitions should not be bypassed.
If there are n states, the algorithm searches different encoding
lengths (l) where log(n) ≤ l ≤ n−1 and tries almost all of the
combinations to find a secure encoding (lines 4–8). The goal
is to find an encoding that does not have any conflict with
the list of prohibited transitions. The initial state is encoded
with all zeros. To check whether an attacker can inject a fault
during a transition from state u to v and gain access to state
t, a mask is generated from the temporary encodings of states
u and v to identify which bits have changed during this tran-
sition (line 10). The changed bits are marked with “x” and
the fixed bits are kept as they are in the generated mask (e.g.,
“0101”→ “1001”: mask = “xx01”). The encoding of state
t is compared with the generated mask. If the encoding has
one-bit difference from the fixed bits of the mask, the tempo-
rary assignment is safe (since reaching to t requires changes
in the fixed bits of transition u→ v). Otherwise, the assigned
encodings are not safe and another combination should be
tried (lines 11 and 12). The algorithm returns an encoding
as a result when there is no conflict with the list of prohib-
ited transitions (lines 13 and 14). Note that we also employ
some heuristics to efficiently reduce the computation cost of
the algorithm (e.g., using one-hot scheme in l bits and assign
it to l states to limit the search space). If there is an optimal
encoding, this algorithm will find it. In the worst case, it uses
one-hot scheme for all of the states except the initial state like
the previous approach. However, this approach requires more
inputs from the designer.

Example 2: Using Algorithm 2, the FSM shown in Fig. 2
can be encoded as: Reset = “0000,” Block Process = “1000,”
Block Next = “0100,” Padding = “0010,” Error = “0111,”
Data Input = “0001,” and Valid = “1110.”

B. AVFSM: FSM Vulnerability Analysis

Our proposed security-aware FSM encoding schemes inher-
ently make the FSM more resistant to fault attacks without
the need of any extra circuitry. However, our proposed encod-
ing schemes do not address the vulnerabilities introduced by
the synthesis process (after state encoding assignments). For
example, synthesis tools can introduce don’t-care states that
have access to the protected states [as shown in Fig. 4(b)],
allowing the attacker to access the protected states via these
don’t-care states. Also, an attacker can use a precise laser
beam to induce bit flips causing the FSM to go to a protected

Algorithm 2 Secure Encoding—Scheme II
1: procedure
2: Input: State Names S, Initial State I, Prohibited Transitions T

3: Output: FSM Encoding Map, SEN
4: for log(N) ≤ l ≤ N − 1 do
5: for all of possible combinations do
6: SEN = {}
7: SEN.add(I, (00..0)l) \\initial state
8: SEN = findEncoding(S, l) \\random encoding with length l
9: for Ti ∈ T do

10: m=generateMask(SEN.get(src(Ti)), SEN.get(dest(Ti)))
11: for prohibited states ti of Ti do
12: checkForConflicts(SEN.get(ti), m);
13: end for
14: end for
15: if (There is no conflict) then
16: return SEN
17: end if
18: end for
19: end for
20: end procedure

Algorithm 3 STG Extraction
1: procedure
2: Input: Gate-level netlist of the FSM, FSM synthesis report
3: Output: STG Modified netlist for ATPG-based FSM extraction
4: FFS ← Identify state FFs
5: SEN ← Get state encoding
6: NM ← Produce the modified netlist
7: for each s ∈ SEN do
8: Apply the logical value of s as constraint on PIXOR

9: Remove all faults and add stuck-at-1 fault at POOR
10: Generate ATPG patterns n times
11: Extract the present state values and conditions
12: end for
13: end for
14: end procedure
15: end procedure

state from an unauthorized state. This type of advanced fault
injection attacks cannot be mitigated through our encoding
schemes. In order to check whether there is any FSM security
concern introduced after synthesis, we propose an AVFSM.

Our proposed AVFSM takes as input: 1) gate-level netlist of
the design; 2) FSM synthesis report; and 3) user given inputs.
AVFSM then extracts the STG of the FSM from the gate-level
netlist and reports a quantitative measure of the vulnerability of
FSM to fault injection attack. These procedures are discussed
in details in the following sections.

1) Extraction of STG: To analyze vulnerabilities in the
FSM, we first need to extract the STG from the synthesized
gate-level netlist. The extracted STG must incorporate the
don’t-care states and transitions which were introduced by
the synthesis process. Existing work in literature only focuses
on FSM reverse engineering from gate-level netlist [23], [24].
However, none of these techniques can extract the STG with
the don’t-care states and transitions.

One straightforward approach would be to perform a func-
tional simulation of the FSM with all possible input patterns
and produce the STG. However, this technique also cannot
extract the don’t-care states and transitions as these don’t-care
states cannot be accessed under the normal operating condi-
tions of the FSM. It is because the synthesis tool introduces
these don’t-care states in such a way that these states cannot
be accessed from the normal states (states mentioned in the
RTL code); otherwise the original functionality of the FSM
will be altered.
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We propose an automatic test pattern generation (ATPG)-
based FSM extraction technique which can produce the STG
with the don’t-care state and transitions from the synthe-
sized netlist. Our proposed extraction technique takes the
gate-level netlist and the FSM synthesis report as inputs,
and automatically generates the STG. Here, our assumption
is that this vulnerability analysis will be performed by the
designer, who has access to the RTL code, gate-level netlist,
synthesis report and therefore has knowledge of the FSM’s
functionality.

The algorithm for STG extraction is shown in Algorithm 3.
It first identifies the state flip-flops (FFS) using the
FSM synthesis report generated by the synthesis tool
(procedure I, line 4). In this paper, we use the Synopsys
dc_shell’s report_fsm [25] command to generate the report.
The report contains names of the state registers (FFS) and the
state encoding information (SEN). The naming of the registers
is conserved during the synthesis process and we can identify
the FFS using the FSM synthesis report.

After identifying the FFS, our algorithm searches if there
are any nonstate FFs (FFNS) present in the input cone of the
FFS [see Fig. 5(a)]. These nonstate FFs are typically counters
and they influence the state transitions in the FSM. We need to
determine the logic values of the FFNS which cause a transition
in the STG.

Next, Algorithm 3 generates the modified netlist for the
ATPG analysis. The modified netlist is shown in Fig. 5(b) and
the original FSM is shown in Fig. 5(a). In the modified netlist,
the output nets of the FFS (defines the present state) and the
FFNS (defines conditions for state transition) are connected as
primary inputs, PIPS, and PIFFNS. Also, XOR gates are placed
at each input net of FFS, and the other input of the XOR gate
is connected as primary input, PIXOR. The output pins of the
XOR gates are ORed together, and the output pin of the OR
gate is added as primary output, POOR. This modified netlist
will be used to generate STG of the FSM.

Finally, Algorithm 3 determines the present states and input
conditions that cause a transition to a particular state s ∈ SEN.
The basic idea is to first apply the logical values of s as
constraints on PIXOR and generate test patterns for stuck-at-1
fault at POOR (lines 8–10). To generate patterns for this fault,
the ATPG tool must produce 0 at POOR which requires the
logic values at the input of the XOR gates to match with the
constraints (s) applied on PIXOR. In other words, the ATPG
tool will generate the logic values of present states (PIPS)
and input conditions (i.e., input pins of the FSM and PIFFNS)
which cause transitions to state s. We generate the test pat-
terns n number of times using Tetramax’s n-detect [25] option
to get all possible present states and input conditions which
cause a transition to s. Although this option does not guarantee
the generation of all possible patterns for a specific fault, in our
experiments we have verified that by specifying a reasonably
large value of n, we can extract the whole STG.

2) Vulnerability Analysis of Fault Attacks: In this section,
we use the extracted STG to analyze how susceptible the
FSM is to fault injection attacks. In our analysis, we con-
sider the weak adversarial model (see Section V) where faults
are injected by violating the setup timing constraints using
overclocking, voltage starving, and/or heating the device [26].

(a) (b)

Fig. 5. (a) Original FSM. (b) Modified FSM for ATPG-based STG extraction.

(a) (b)

Fig. 6. Setup time violation-based fault injection attacks. Fault injection is
not possible in case of (a), whereas it is possible in case of (b).

These types of attacks require low-cost equipment and pose
the most serious threat [1].

Estimating the vulnerability of hardware cryptosystems
against timing violation attacks have been recently proposed
in [19]. However, their proposed technique can only be applied
to the data path and not to the FSM. Unlike data path, the FSM
presents some unique challenges in vulnerability analysis of
fault injection attacks (e.g., existence of don’t-care states and
transitions). Here, we propose a technique which analyzes each
transition of the STG and based on a proposed metric quanti-
tatively measures how susceptible that transition is to a fault
injection attack. Based on the result, AVFSM will automati-
cally report overall vulnerability measures of the FSM to fault
attacks.

Our vulnerability analysis is based on the observation shown
in Fig. 6. Let us consider the state transition T(00, 10) where
the current state is “00” and the next state is “10.” During this
transition, one cannot perform time violation-based fault injec-
tion attacks to go to state “01” [see Fig. 6(a)]. It is because
during T(00, 10), the LSB bit of both the current state and
the next state remains 0 and therefore, a setup time violation-
based fault cannot be injected at this bit position to change
the bit value to 1. On the other hand during T(10, 01), one
can inject a fault to go to state “11” [see Fig. 6(b)]. To suc-
cessfully inject this fault, the setup time constraint of MSB
state FF needs to be violated whereas the setup time con-
straint of LSB state FF needs to be maintained. In other
words, delay of the logic path of MSB state FF needs to
be greater than the delay of the logic path of LSB state
FF. We formulate these conditions by C and SFT as shown
in Algorithm 4.

To perform the fault vulnerability analysis, Algorithm 4
looks into each state transition of the extracted STG and ana-
lyzes if a fault can be injected during this transition to gain
access to a protected state. It first computes the condition,
C (line 11) for each transition and if C == 1, then it con-
siders the respective transition as Vulnerable Transition, VT
(line 12 and 13). VT is defined as a set of transitions during
which a fault can be injected to gain access to a protected
state. For each VT, Algorithm 4 reports the conditions that
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Algorithm 4 Conditions for Fault Injection Attack
1: procedure
2: Input: Extracted State Transition Graph
3: Input: set of protected state P \\User given input
4: Output: Conditions for successful fault attacks
5: T(x, y)← Extracted STG
6: for each T(x, y) do \\Transition from x to y
7: Sx = [bx(n−1).....bx1bx0] \\Sx is state encoding of x
8: Sy = [by(n−1).....by1by0] \\and b represents each bit of S
9: P = [bp(n−1).....bp1bp0]

10: Compute C =∏(n−1)
i=0 ((bxi ⊕ byi)||(bxi ⊕ bpi))

11: if (C == 1) then
12: Fault attack possible for T(x, y)
13: VT(x, y)← T(x, y)
14: for i = 0 to (n− 1) do
15: if (bxi ⊕ byi) then
16: if (bxi == bpi) then
17: PVx,y(i) = {PFs(i)}
18: else
19: POx,y(i) = {PFs(i)}
20: end if
21: end if
22: end for
23: Compute SFT(x,y) = min(PVx,y)−max(POx,y)

avg(PFS)

24: else
25: Fault attack not possible for T(x, y)
26: end if
27: end for
28: end procedure
29: end procedure

need to be satisfied to perform a setup time violation-based
fault attack which are shown below.

1) Path Violated: Setup time constraints of the state FFs
in these paths need to be violated (line 17), i.e.,
PFs ≥ Clockperiod. The path delay of these state FFs
are represented as PV.

2) Path OK: Setup time constraints of the state FFs
in these paths need to be maintained (line 19), i.e.,
PFs < Clockperiod. The path delay of these state FFs
are represented as PO.

3) Path No-Effect: State logic bit in this path does not
change during the transition and therefore, this path has
no impact on the vulnerability analysis.

Apart from the protected states, Algorithm 4 also considers
the don’t-care states that have access to the protected states
and reports the transitions as VT which can give access to
these don’t-care states. These don’t-care states are defined as
dangerous don’t-care states (DDCS) and mathematically can
be represented as

DDCS = {
s′ | (A

(
s′
) = P

) ∩ (
s′ ∈ SD

)}
. (3)

Now, each VT may not pose the same level of threat to the
implemented FSM. To quantify how susceptible each VT is to
fault injection attacks, Algorithm 4 uses Synopsys′s Primetime
tool [25] (for STA) to get the maximum path delay of each
state FFs. We propose the susceptibility factor metric, SFT to
quantitatively measure the vulnerability of each transition to
fault injection attacks,

SFT = min(PV)−max(PO)

avg(PFS)
. (4)

Here, avg(PFS) is calculated by taking the mean value of
all the PFS. min(PV) is the minimum value of delays in Path
Violated, and max(PO) is the maximum value of delays in
Path OK. Now, if min(PV) < max(PO), then SF is negative.
It means that the delay of a path in Path OK is higher than

(a)

(b)

Fig. 7. (a) Security-aware FSM architecture. (b) Detailed implementation
strategy. A, P, and R represents each bit of “Authorized,” “Protected,” and
“Reset” state.

the delay of a path in Path Violated and fault injection for this
transition is not feasible in the implemented circuit. Therefore,
the transitions with negative SF is removed from the set of
vulnerable transitions VT.

We propose the following overall metric, vulnerability factor
of fault injection (VFFI) to measure the overall vulnerability of
the FSM to fault injection attacks. VFFI is defined as follows:

VFFI = {PVT(%), ASF} (5)

where

PVT(%) =
∑

VT
∑

T
, ASF =

∑
SF

∑
VT

.

The metric VFFI is composed of two parameters
{PVT(%), ASF}. PVT(%) indicates the percentage of number
of vulnerable transitions (

∑
VT) to total number transitions

(
∑

T), whereas ASF signifies the average of SF. The greater
the values of these two parameters are, the more susceptible
the FSM is to fault attacks. Note that we consider the PFS
to be normally distributed with the mean value of maximum
path delay (reported by STA) and a variance value of 5% of
avg(PathFS) to take into account of process variation.

C. Security-Aware FSM Architecture

To address the security vulnerabilities identified by AVFSM,
we propose a security-aware FSM architecture to ensure that
protected states are only accessed from authorized states and
cannot be accessed from unauthorized states and don’t-care
states. Thereby, our proposed architecture can mitigate laser
and fault injection attacks, and also addresses the vulnerabil-
ities introduced by the don’t-care states. The security-aware
FSM architecture requires some additional circuitry that need
to be incorporated in the design at RTL level.

The operation of FSM is as follows. During each state tran-
sition, the next state logic bits appear at the input of the state
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FFs. At the positive edge of the clock signal the present state
bits (output of the state FFs) are updated to the next state
logic values. Because a state transition occurs at every clock
edge, it does not provide any opportunity to analyze the next
and the present state and verify if the next state transition is
authorized. We propose to get around this limitation by incor-
porating another set of state FFs along with a “secure FSM
logic” and cascade it with the original FSM [see Fig. 7(a)].

The secure FSM logic implements the following function
and ensures that only the authorized states can access the
protected states.

if ((next_state = Protected) and (present_state /=
Authorized)) then

present_state = Reset
else

present_state = Protected
end if.
Note that secure FSM logic can have unbalanced and

nonuniform paths if we implement it using a synthesis tool.
Therefore, we custom design the secure FSM logic so that
it has equal and uniform delay. The detailed implementation
is shown in Fig. 7(b). This implementation ensures that all
paths from “Next State” to “Present State” have nearly uni-
form and equal delays. Also, the buffers in the architecture
ensure that signals from the next state FFs do not reach the
present state FFs before the secure FSM logic determines
whether the protected state is being accessed by the autho-
rized state. Therefore, an adversary can no longer exploit the
nonuniform path delay distribution to perform fault injection
attacks. Although, we try to make delays of all paths in secure
FSM logic to be uniform and equal, some nonuniformity will
be introduced by the process variation during the fabrication
process. However, the nonuniformity introduced by the pro-
cess variation would be much smaller and therefore, would be
extremely difficult for an attacker to exploit.

This architecture only adds one cycle latency but does not
affect the delay of the FSM which is desirable for most
controller circuits. The area overhead associated with our
proposed architecture is the extra set of state FFs and the
secure FSM logic. Given the simple function implemented by
secure FSM logic, the associated area overhead is low (see
Section VIII-F). Also, our proposed technique does not require
any gate-level modification, making it feasible in practice.

VIII. RESULTS AND DISCUSSIONS

In this section, we evaluate our proposed secure FSM design
flow using five controller benchmark circuits. First, we give a
brief description of the five controller benchmark circuits and
illustrate how setup-time violation-based fault attack can be
mounted on these benchmarks to compromise their security.
Then we present a case study using one of these benchmarks
(AES controller module) and show that our proposed VFFI
metric can effectively capture the probability of successful
fault injection attacks on controller circuit. We also encode
each benchmark circuit using traditional and proposed encod-
ing schemes, and compare their results in terms of security,
performance, and cost. Finally, we validate our security-
aware FSM architecture and analyze its area and performance
overhead.

All benchmark circuits of our experiments were synthe-
sized using Synopsys Design Compiler [25] with 180-nm
GSCLib Library from Cadence. Note that, our framework is
technology independent and therefore, is compatible with any
standard cell library. Also note that, our flow is developed for
ASIC designs. Therefore, we verified our results through post
synthesis simulation using VCS.

A. Fault Attack on Controller Circuits

Here, we discuss how fault injection attacks on FSM can
compromise security using five controller benchmark circuits,
SHA-256, AES, memory controller, MIPS microprocessor, and
RSA (Montgomery ladder algorithm). All these benchmarks
are collected from OpenCores [16]. We have already presented
fault attacks on SHA-256 controller circuit in Section IV and
the rest are discussed below.

1) AES Controller Module: The FSM of AES controller
circuit is composed of five states: 1) Wait Key; 2) Wait Data;
3) Initial Round; 4) Do Round; and 5) Final Round. During
“Wait Data” state, the plaintext is loaded into the AES dat-
apath while during “Initial Round” and “Do Round” states,
ten rounds of AES occur. After ten rounds, the “Final Round”
state is reached and result is latched to the result registers. Two
possible attacks can be mounted against this controller circuit.
If an attacker can inject a fault and gain access to the Final
Round without going through the Initial Round and/or Do
Round states, then premature results will be stored, potentially
leaking the secret key. If the Wait Data state can be bypassed,
the same ciphertext will be generated for every plaintext result-
ing in a DoS attack. Therefore, for this FSM we consider Final
Round and Wait Data as protected states.

2) Memory Controller Module: This module allows an
external bus master to access the memory bus if the external
bus master grants access through “mc_gnt” signal. We assume
that the host CPU authenticates the external bus master and
asserts mc_gnt signal. The attacker’s objective would be to
inject a fault and bump into the state which allows access to
memory bus without going through the mc_gnt assertion.

3) MIPS Microprocessor Controller: This controller mod-
ule generates the control bits for the multiplexers, the data
memory and ALU control signals for the MIPS processor. It
takes the given opcode, as well as the function code from
the instruction, and translates it to the individual instruction
control signals which are needed for the remaining stages.
The FSM of this controller module includes memory read and
write states that can only be accessed by memory instruc-
tions. Here, we assume that privilege control is implemented
in software which analyzes the memory instructions from user
kernel and asserts if it does not access memory locations which
are dedicated to system kernel. However, if an attacker can
inject a fault during nonmemory instructions (e.g., add) and
access the memory read and/or write states, he/she can poten-
tially bypass the privilege control protection and gain access
to system memory locations. Here, we consider the memory
read and/or write states as protected states.

4) RSA Controller Module: RSA controller module imple-
menting the Montgomery ladder algorithm presented in [3].
The FSM of this controller module consists of seven states:
1) Idle; 2) Init; 3) Load1; 4) Load2; 5) Multiply; 6) Square;
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and 7) Result. Here, the attacker’s objective would be to bypass
the intermediate rounds of “Square” and “Multiply” states and
access the “Result” state to obtain either the key or premature
result of RSA encryption. Therefore, Result is the protected
state.

B. Case Study on AES

We apply our proposed AVFSM analysis on two imple-
mentations of AES encryption module’s controller circuit and
compare each implementation’s vulnerability. First, we have
used two different encoding schemes for the FSM of the
AES encryption module. We use {Wait Key, Wait Data, Initial
Round, Do Round, Final Round} = {000, 001, 010, 011, 100}
and {Wait Key, Wait Data, Initial Round, Do Round, Final
Roun} = {000, 100, 011, 101, 111} for schemes I and II,
respectively. We then synthesize each scheme with medium
area effort and apply the AVFSM analysis to evaluate the vul-
nerabilities of each implemented FSM. Our analysis returns
the following assessment: VFFI = {0, 0} for scheme I
and VFFI = {23%, 0.38} for scheme II. As explained in
Section VII-B, a greater the value of VFFI represents the
FSM to be more vulnerable fault attacks. Therefore, we can
expect scheme II to be vulnerable to fault attack, whereas
scheme I is not.

We validate the AVFSM analysis by simulating a setup-time
violation-based fault attack on scheme I and II. We perform
this simulated fault attack by increasing the clock frequency
to cause setup time violation. Note that, reducing the voltage
and/or increasing the temperature will have the same effect.
For scheme II, the fault attack causes the FSM to bump to Final
Round without going through the round operations, poten-
tially leaking the key. This attack works as follows, during
the transition from Wait Data (100) to “Initial Round” (011),
the setup time of state FF(2) is violated while the setup time of
state FF(1) and state FF(0) is maintained. Therefore, instead of
going to Initial Round, the FSM bumps to Final Round. When
the Final Round is reached, the “finished” signal is asserted
to 1 causing the expanded key to be captured by the result
register.

However, we were unable to induce a successful fault attack
on scheme I. This case study validates that our AVFSM tech-
nique can correctly capture the probability of successful fault
injection attack.

C. Comparison of Different Encoding Schemes

We compare the security, cost and performance of
our proposed encoding schemes with traditional encoding
schemes, i.e., binary and one-hot on the benchmark controller
circuits described in Section VIII-A. We quantitatively analyze
the security of the FSMs using the VFFI metric. We utilize
the Design Compiler tool to obtain the area and the maximum
delay of each benchmark.

Table III summarizes all results. The area and delay shown
in columns 6 and 7 reflect the cost and performance (crit-
ical path delay) of the controller circuit, respectively. Note
that, the controller circuit of SHA, AES and RSA contain
FSMs with less than 8 states. It may appear that our analysis
was performed on smaller benchmark circuits. Actually, most
implementations of cryptographic algorithms tend to have a

TABLE III
RESULTS FOR DIFFERENT FSM ENCODING SCHEMES

small number of states (based on our review of crypto designs
at opencore [16]). These crypto controller circuits would most
likely be targeted for fault attack. We also apply our analy-
sis on larger controller circuits, e.g., memory controller FSM
with 66 states to show the scalability and applicability of our
approach.

From Table III we can make the following important
observations.

1) For all the benchmark circuits, binary encoding makes
the FSM vulnerable to fault attack. Also, the greater
value of VFFI for binary encoding reflects binary
encoding-based FSMs are more susceptible to faults
attacks.

2) One-hot encoding requires more area for all the bench-
mark circuits; though it is better compared to binary
encoding from a security perspective.

3) Our proposed encoding schemes offer much better secu-
rity while having little or no cost and performance
overhead.

4) Only in one benchmark FSM (MIPS microprocessor),
our proposed encoding schemes are vulnerable to fault
attack. These security vulnerabilities are created by syn-
thesis tools in the form of don’t-care states and the
encoding schemes cannot address these vulnerabilities
as mentioned in Section VII. For this FSM, we need to
apply our proposed FSM architecture to make it secure
against fault attack.

5) Scheme II has better cost and performance compared to
Scheme I. However, Scheme II requires more designer
involvement and therefore, may increase time-to-market
with respect to Scheme I.

D. Security and Cost of Linear EDC

We analyze the security and cost of linear EDC-based
approaches using the benchmark controller circuits described
in Section VIII-A. We first encode the FSMs of AES, SHA,
and RSA controller modules using Hamming (7,4) code and
encode the FSMs of MIPS micro-processor and memory con-
troller modules using Hamming (15,11) code. We then place
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the error detection circuitry at the output of the state FFs. We
quantitatively analyze the security of the FSMs using the VFFI
metric [12]. Table IV summarizes the results.

From Table IV, we can observe that EDC-based approaches
cannot provide adequate protection as indicated by the VFFI
metric. For all controller benchmark circuits except the
memory controller, the FSMs are susceptible to fault attack
even with error detection protection in place. The reason is
that EDC-based approaches do not take into account the biased
fault model, where an attacker can exploit the nonuniform path
delay distribution of an FSM to flip multiple targeted bits and
bypass normal state transitions to bump into a protected state
directly. Also, there are valid don’t-care states in EDC-based
countermeasure as shown in column 5 in Table IV. If these
valid don’t-care states have access to a protected state, they
present a security vulnerability; as these don’t-care states can
be exploited to access the protected state without triggering
the error detection mechanism.

It is clear from Table IV that the EDC-based counter-
measures have much higher area overhead (on average 54.72%
with respect to Scheme I and 75.59% with respect to
Scheme II) and timing overhead (on average 45.99% with
respect to Scheme I and 46.57% with respect to Scheme II)
compared to our proposed security-aware encoding schemes.
The reason is that, unlike our proposed encoding schemes
which make the FSM inherently resilient to fault attack, EDC
approaches require additional circuitry for error detection.
However, our proposed security-aware encoding offers better
security (fault attack resilience) compared with EDC-based
approaches (validated by VFFI metric).

Note that, there are other EDC-based approaches
(e.g., [3], [5], [8], and [10]) which have higher error
detectability than Hamming code. However, none of these
approaches address the vulnerabilities introduced by the syn-
thesis tool and therefore, cannot provide adequate protection
to fault attack.

E. Security and Cost of Nonlinear EDC

Nonlinear EDC-based techniques [3], [9], [13] utilize the
“Error Detectability” metric to evaluate the security of the
algorithm. Error Detectability states the probability of detect-
ing any error due to faults by an EDC algorithm. For example,
Error Detectability of 1 − 2−16 means a fault error can be
detected with a probability of 0.99998. Therefore, a nonlin-
ear EDC-based technique with adequate Error Detectability
metric an provide protection for any bit-flips due to fault.
Therefore, these techniques can potentially detect fault injec-
tion attacks which can individually set or reset a single FF
without affecting any other gates utilizing FIBs.

However, the nonlinear EDC-based techniques require
impractical area and delay overhead. For example, to protect
the RSA controller module which consists of 80 gates and
has a delay of 0.64 ns with a minimum error detectability of
1 − 2−2, the technique proposed in [15] requires 8305 gates
(area overhead 10.281%) and has a delay of 29.99 ns (delay
overhead 4.586%) [15]. If the minimum error detectability is
raised to 1− 2−16, this technique requires 96 096 gates (area
overhead 120.020%) and has a delay of 294.57 ns (delay over-
head 45.926%) [15]. Even considering the overall design, these

TABLE IV
RESULTS FOR EDC-BASED APPROACHES

TABLE V
DELAY DISTRIBUTION OF SECURE FSM LOGIC

area and delay overhead are prohibitively expensive for most
applications.

We evaluate the security of our proposed encoding schemes
using the VFFI metric. It is similar in spirit to the Error
Detectability as it provides a mathematical probabilistic mea-
sure of successful fault injection attack. For example, VFFI of
(0,0) means a protected state cannot be accessed by an unau-
thorized state and the respective FSM is not vulnerable biased
fault attacks. Table III shows that our proposed approach can
provide adequate security for most FSMs. Also, our approach
requires negligible area and delay overhead. Note that, our
proposed technique does not cover FIB-based fault attack as
discussed in Section V.

F. Results of Our Proposed FSM Architecture

We first validate that our proposed security-aware FSM
architecture has equal and uniform path delay distribution.
Table V shows the minimum and maximum delay of our
secure FSM logic for the binary encoded AES controller cir-
cuit where the Final Round is the protected state. NS and PS
in the table represent the Next State and Present State bits,
respectively. Table V shows that all paths from Next State to
Present State have almost equal and uniform delay. Therefore,
an adversary can no longer exploit the nonuniform path delay
distribution to perform fault injection attack. We implemented
the security-aware FSM architecture for different benchmarks
with different number of protected states. Our experiments
show that our proposed architecture ensures almost uniform
and equal delay for these cases as well.

We also validated the security provided by our proposed
security-aware FSM architecture, by applying it to the fault
attack scenario presented in Section VIII-B. We place our
secure FSM architecture on the scheme II of the AES con-
troller circuit and apply the same fault attack environment.
However, we were unable to perform a successful fault attack.
The reason is that when the protected state Final Round (111)
is tried to be accessed from an unauthorized state Wait Data
(100), the secure FSM logic changes the present_state to “000”
state; thereby protecting the FSM from fault attack. Also, we
have performed simulated fault attacks by introducing glitches
in the clock signal to cause setup time violation of state FFs
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Fig. 8. Security-aware FSM architecture. Area overhead analysis with respect
to overall design.

and our results show this architecture can effectively prevent
these attacks as well.

Fig. 8 presents the area overhead as a function of the num-
ber of protected states when our proposed FSM architecture
is applied to the five controller circuit. The overhead shown is
with respect to the overall design (including controller and dat-
apath). Fig. 8 shows that the area overhead increases linearly
with respect to the number of protected states. The reason is
that, the area corresponding to the secure FSM logic increases
linearly with the number of protected states. Also, we can
observe that the area overhead is significantly small (<1.5%)
compared to the overall design. Moreover, our proposed archi-
tecture has no delay overhead; it adds only one cycle latency
to the design. Note that, the area overhead for RSA is much
smaller compared to the Memory Controller. The reason is
that the overall area of RSA is much larger than the Memory
Controller.

Our flow can serve as an important component of the recent
academic and industrial initiative for developing CAD frame-
works for automated security vulnerability assessment of hard-
ware designs [27], [28]. The FSM extraction of our proposed
flow can be used for different applications, e.g., extracting
trigger sequence [29] for sequential Trojan [30]–[32].

IX. CONCLUSION

In this paper, we presented a security-aware FSM design
flow to make the FSM fully secure against fault injection
attacks. To establish this flow, we proposed two security-
aware FSM encoding schemes. Our encoding schemes inher-
ently make the FSM tolerant to fault attacks without the
need of any extra circuitry. We also proposed a framework
that systematically analyzes and evaluates vulnerabilities in
the FSM against fault injection attacks. Our proposed flow
allows the designer to find security vulnerabilities in the
FSM at an early design stage. Our approach also enables
the designer to quantitatively compare the security of dif-
ferent implementations of the same design. If vulnerabilities
exist in the design then our proposed mitigation technique
can be applied to make the FSM secure against such attacks.
To eliminate the vulnerabilities identified by AVFSM, we
propose a security-aware FSM architecture. Our proposed
FSM architecture provides protection against laser-based fault
attack and addresses the vulnerability introduced by CAD
tools which are not covered by the encoding schemes. The
proposed approach can easily be incorporated to the current
ASIC flow.
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