J Hardw Syst Secur (2017) 1:85-102
DOI 10.1007/s41635-017-0001-6

@ CrossMark

Benchmarking of Hardware Trojans and Maliciously

Affected Circuits

Bicky Shakya! - Tony He! - Hassan Salmani? - Domenic Forte! - Swarup Bhunia! -

Mark Tehranipoor!

1

Received: 27 July 2016 / Accepted: 8 March 2017 / Published online: 10 April 2017

© Springer 2017

Abstract Research in the field of hardware Trojans has
seen significant growth in the past decade. However, stan-
dard benchmarks to evaluate hardware Trojans and their
detection are lacking. To this end, we have developed a suite
of Trojans and ‘trust benchmarks’ (i.e., benchmark circuits
with a hardware Trojan inserted in them) that can be used by
researchers in the community to compare and contrast var-
ious Trojan detection techniques. In this paper, we present
a comprehensive vulnerability analysis flow at various lev-
els of abstraction of digital-design, that has been utilized to
create these trust benchmarks. Further, we present a detailed
evaluation of our benchmarks in terms of metrics such as
Trojan detectability, and in the context of different attack

>4 Bicky Shakya
bshakya@ufl.edu

Tony He
tonyhe @ufl.edu

Hassan Salmani
hassan.salmani @howard.edu

Domenic Forte
dforte @ece.ufl.edu

Swarup Bhunia
swarup @ece.ufl.edu

Mark Tehranipoor
tehranipoor @ece.ufl.edu

ECE Department, University of Florida, Gainesville,
FL 32611, USA

ECE Department, Howard University, Washington,
DC 20059, USA

models. Finally, we discuss future work such as automatic
Trojan insertion into any arbitrary circuit.

Keywords Hardware Trojan - Benchmarks - Hardware
security

1 Introduction

The past decade has seen great advancement in research
for hardware Trojan detection and prevention. Many tech-
niques have been proposed for Trojan detection at several
stages in the supply chain. However, such techniques, while
bearing merits of their own, have several shortcomings. We
highlight some of these shortcomings below.

— Ad-hoc Trojans: For each detection technique, re-
searchers have mostly resorted to using ‘home-grown’
hardware Trojans to demonstrate the advantages and
accuracy of the proposed techniques. While such Tro-
jans might be suited to a particular detection approach,
the results might vary vastly when they are used in
the context of other detection approaches. Due to this,
when comparing results between different detection
techniques, there is never a baseline for comparing the
merits of one technique to another. Further, it is not
clear if these Trojans satisfy the basic characteristic of
a hardware Trojan, i.e. it must be able to bypass abso-
lutely all commonly used manufacturing test methods
such as functional, structural, fault-based tests etc.

— Varying Assumptions: The simulation/implement-
ation environment and factors such as the amount
of process variation allowed, difficulty of triggering

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-017-0001-6&domain=pdf
mailto:bshakya@ufl.edu
mailto:tonyhe@ufl.edu
mailto:hassan.salmani@howard.edu
mailto:dforte@ece.ufl.edu
mailto:swarup@ece.ufl.edu
mailto:tehranipoor@ece.ufl.edu

86

J Hardw Syst Secur (2017) 1:85-102

Trojans, Trojan switching activity, size of design (no. of
gates, Trojan size) etc. also vary greatly from one tech-
nique to another. This further compounds the problem
of comparing various Trojan detection schemes.

— Ad-Hoc Metrics: The metrics used for evaluating
detection techniques have been mostly ad-hoc as well.
Some researchers may choose to evaluate their tech-
nique in terms of an arbitrary percentage detection rate,
some may present false positive/false negative rates and
some may explain their results in terms of test cover-
age. While these techniques may be working with the
same Trojan attack model, comparison between them
becomes difficult with ad-hoc figures of merit.

Thus, there is a need for a unifying approach for hard-
ware Trojan detection. In order to address this need, we
have developed tools to assess the vulnerability of designs
that can be exploited for insertion of various types of Tro-
jans, as well as tools to evaluate the stealthiness or difficulty
of detecting Trojans. Using these tools, we have designed
an array of Trojans that have been carefully integrated into
various circuits to create “trust benchmarks”. Benchmark
circuits are commonplace in many different fields. Vari-
ous circuit benchmarking efforts such as the ITC °02 [1],
ISCAS ’85 [2] and ’89 [3] benchmark sets have allowed
comparative research in the field of modular SoC test-
ing and combinational/sequential logic synthesis. Further,
research fields such as multimedia systems, computer archi-
tecture, digital signal processing and machine intelligence
have greatly benefited from their own set of benchmarks,
which have allowed objective comparison of different tech-
niques [4, 5]. This widespread use of benchmarks in various
fields only emphasizes the need for specific benchmarks in
the field of hardware Trojan detection. Our hope is that these
benchmarks will allow researchers to implement their Tro-
jan detection schemes and compare them to others on a level
playing field.

The Trojans that we have developed are (i) not detectable
by standard manufacturing tests; (ii) vary in size and dis-
tribution to fit different Trojan insertion scenarios; and (iii)
are implemented at different levels of abstraction from RTL,
netlist, to layout. As we have seen in Table 1, a large num-
ber of potential Trojans can be inserted at different levels
in the supply chain. Taking this into consideration, we have
developed trust benchmarks that cover each stage in the sup-
ply chain, and have been implemented in different platforms
from microcontrollers, cryptographic IP cores to JTAG con-
trollers. This can help the research community and industry
to prioritize their efforts for developing defenses against
hardware Trojans. A further merit of these trust bench-
marks is that it will help in the reproducibility of results.

@ Springer

Table 1 Comprehensive adversarial models for hardware Trojans

Model 3PIP vendor SoC developer Foundry
A Untrusted Trusted Trusted

B Trusted Trusted Untrusted
C Trusted Untrusted Trusted

D Untrusted Untrusted Untrusted
E Untrusted Untrusted Trusted

F Untrusted Trusted Untrusted
G Trusted Untrusted Untrusted

This is vital for transferring these detection techniques from
research to real-world implementation. Further, each Trojan
we have developed has been analyzed by concrete metrics,
which establishes a sound basis for analyzing the hardness
of detecting Trojans in each benchmark instance. Note that
for these trust benchmarks, the Trojans have been manually
inserted into the benchmark circuits after vulnerability anal-
ysis. We do not perform an automatic payload identification
for any arbitrary circuit, which would be part of our future
work (Section 7). This would aid in developing “Trojan
benchmarks”, which are custom-designed Trojan circuitry
that can be inserted into any arbitrary circuit, as opposed to
the specific benchmark circuits we have used for developing
the trust benchmarks. Compared to [6] which only looked at
gate-level benchmarks, this paper explores trust benchmarks
and vulnerability analysis at different levels of abstraction
(RTL, gate, layout, FPGA), introduces attack models for
benchmark evaluation and thus, takes a holistic approach
towards trust benchmark development.

The rest of the paper is organized as follows. In Sections 3
and 4, we will introduce a comprehensive Trojan taxon-
omy and review the benchmarks we have developed over
the course of the past few years. In Section 5, we will
describe the tools we have developed to perform vulnerabil-
ity analysis on a design. In particular, we will talk about a
vulnerability analysis flow that can determine which parts
of a circuit are more susceptible to Trojan insertion, at the
layout, gate and behavioral level. In Section 6, we will dis-
cuss the Trojan evaluation suite we have developed, which is
based on the efficiency of test patterns in activating the Tro-
jan and a Trojan’s resiliency to side-channel analysis. The
evaluation suite will help us to explain the trust benchmarks
in terms of concrete metrics such as ‘detectability’. In the
same section, we will also present results on the trust bench-
marks, based on our Trojan evaluation suite and the attack
models we presented earlier. In Sections 7 and 8, we will
provide remarks on future work for further development of
trust benchmarks and conclude the paper.

J Hardw Syst Secur (2017) 1:85-102

87

2 Background
2.1 Hardware Trojans

A hardware Trojan is defined as a malicious, undesired
and intentional modification made to an electronic circuit.
Such a modification can potentially bring about a variety of
effects [7], such as:

— Change of functionality: A hardware Trojan can alter
the functionality of a circuit and cause it to perform
malicious, unauthorized operations, such as bypassing
of encryption algorithms, privilege escalation, denial of
service etc.

— Degradation of performance: A hardware Trojan
could also cause damage to the performance of an IC
and cause it to fail, which could potentially jeopar-
dize the (critical) system into which the IC is inte-
grated. Such effects could be in the form of induced
electromigration of wires by continuous DC stress,
increase/decrease in path delay, fault injection etc.

— Leakage of information: Trojans could also undermine
the security provided by cryptographic algorithms or
directly leak any sensitive information handled by the
IC. This could involve leakage of cryptographic keys or
other sensitive information through debug or I/O ports,
side-channels (delay, power) etc.

2.2 Adversarial/Attack Models

In order to accomplish one or more of the effects shown
above, a malicious entity present in any given stage of
the IC design/manufacturing process (Fig. 1) can insert the
Trojan at various levels of abstraction. This brings up the
need to define hardware Trojan in the context of differ-
ent adversarial models. In Table 1 and below, we present a

comprehensive list of adversarial models that show exactly
when, where and how a Trojan can be inserted into an IC
[8]. The unique sources of Trojans are 3PIP vendor, SoC
integrator, and foundry. A Trojan can be inserted by one or
more of these entities as follows:

— Model A: In this attack model, the third-party IP that a
SoC developer or design house buys may contain hard-
ware Trojans. This is a considerable threat in today’s
semiconductor design landscape, where SoCs are made
by integrating several 3PIPs in order to reduce com-
plexity, cost and shorten time-to-market. The effect and
design of the Trojan can vary depending on whether
the IP is soft (RTL-level), firm (netlist-level) or hard
(GDSII).

— Model B: Attack model B relates to the threat of
untrusted foundry/assembly. Since a foundry has access
to all layers of the design, they can perform reverse-
engineering of the design, in order to add/modify/delete
gates and create Trojans in the design. This attack
model is especially significant in today’s horizontal
semiconductor business model, where the design house
has little to no control of the off-shore foundries.

— Model C: Attack model C relates to an untrusted design
house. This can be either due to an untrusted EDA tool
used by the design house or a rogue employee (mali-
cious insider) that maliciously modifies the design.

— Model D: This attack model relates to the threat
faced by most consumers or system integrators (e.g.
PCB developers), who are forced to buy commer-
cial off-the-shelf (COTS) in order to minimize costs.
Since they have no control over any aspect of the
design/manufacturing process, the threat of a Trojan
insertion can occur at all three sources.

— Model E: In this attack model, all parties except the
foundry are assumed to be trusted. This can be the case

IP Core EDA Tool
g '
B RTL Design/ Netlist/ Physical Design o
Spéctication Behavior Level Gate Level Layout Falwication

module xor_gate (out, a, b):
input b:
output out:
wire abar, bbar, t1, t2;

inverter invA (abar. a):
inverter inve (bbar, b):
and_gate andl (t1, a, bbar):
and_gate and? (t2, b, abar):
or_gate orl (out, t1, £2):

endmodul e

Fig. 1 Supply chain for IC production

@ Springer

88

J Hardw Syst Secur (2017) 1:85-102

when the foundry and the manufacturing process are
trusted but the development process is not. This model
can also account for cloned ICs, where malicious par-
ties could reverse engineer a Trojan-free chip and create
designs with Trojans inserted.

Model F: This adversarial model applies to a majority
of trusted design houses today who are forced to rely on
untrusted 3PIPs and foundries.

Model G: This attack model relates to companies who
have designed their own proprietary IPs but need to rely
on an untrusted design house and foundry to manufac-
ture their final ICs.

2.3 Detection Techniques

With such an array of vulnerabilities from one or more
untrusted entities, there is a pressing need to develop hard-
ware Trojan detection techniques for assessing a design at
various levels of abstraction. To address this need, the hard-
ware security research community has proposed a plethora
of Trojan detection techniques over the past decade. These
efforts can be broadly separated into three categories.

Post-silicon detection includes destructive and non
destructive techniques to detect Trojans in manufac-
tured chips. In destructive techniques, a fabricated
chip is completely reverse-engineered layer-by-layer
in order to reconstruct the design and compared with
a Trojan-free or ‘golden’ design to detect Trojans.
While such techniques offer high probability of Tro-
jan detection, the time and cost required to perform
reverse-engineering can be prohibitively high. Non-
destructive techniques focus on detecting Trojans using
functional tests or side-channel analysis. In functional
tests, test-vectors are applied to the design and the
responses/outputs are compared to the correct results
to find anomalies (which could potentially be Tro-
jans). However, a Trojan designer will, more likely
than not, make sure that the Trojan is activated only
under very rare conditions (such as an extremely rare
test pattern), so that it can evade standard manufac-
turing tests. Added to this problem, modern designs
may have a very high number of test patterns, mak-
ing it impossible to conduct exhaustive functional tests.
Prior work in Trojan detection has looked at techniques
for generating test-patterns that can specifically target
rarely activated nets [9—12]. However, the large num-
ber of states/inputs in modern designs limit the accuracy
of these approaches, especially for Trojans that have
extremely low trigger probability. In side-channel anal-
ysis, the impact of Trojans on circuit delay, transient
current, leakage power, thermal profiles etc. are used for

@ Springer

detection [13—19]. Most, if not all of these techniques
require a golden model for comparison/detection, which
might not always be available. Further, with the large
process variation experienced at advanced nodes, such
side-channel analysis based techniques might produce
a significant amount of false positives/false negatives,
limiting their applicability.

— Pre-silicon detection is necessary to detect Trojans that
could have been inserted in 3PIP cores, by untrusted
EDA tools, and/or by rogue employees in the design
itself. Netlist-level IP cores can be tested by using the
same functional testing techniques, as described above.
For soft IP cores, various techniques such as code or
structural analysis [20, 21] have been proposed, which
analyze hardware description languages for redundant
lines of code, conditional statements that rarely trigger
etc. which could be possible locations where Trojans
have been coded down. Formal verification has also
been recently adapted for Trojan detection, where IP
cores are tested by proof-checking/model-checking to
make sure they perform the intended functionality and
nothing else [22-25]. Such techniques are limited due
to two issues. Firstly, most 3PIP blocks come as hard
macros or in encrypted form, whose internal imple-
mentations are often inaccessible and can only be used
as black-boxes. Secondly, for functional verification,
there might always exist Trojans that could satisfy
proof-checking constraints and evade detection.

— Design for Trust techniques are also necessary in order
to make Trojan detection easier and/or Trojan inser-
tion prohibitively difficult. Towards facilitating detec-
tion, techniques such as facilitating functional test by
increasing the observability of nodes [26], increas-
ing side-channel activity caused by Trojans [27] and
run-time monitoring [28] have been proposed. On the
other hand, in order to make Trojan insertion diffi-
cult, researchers have proposed techniques such as logic
obfuscation to lock the functionality of the IC [29-31],
functional filler cell insertion [32] for layout protec-
tion, IC camouflaging [33] and split-manufacturing
[34, 35] to prevent reverse-engineering of the design.
These design-for-trust techniques can potentially help
to detect and prevent highly stealthy Trojans that can
otherwise evade pre and post-silicon detection tech-
niques, albeit at the cost of area, power and timing
overhead.

2.4 Hardware Trojans in FPGA Designs
FPGAs are widely used today in an array of embedded

applications ranging from telecommunications and data
centers to missile guidance systems. Unfortunately, the

J Hardw Syst Secur (2017) 1:85-102

89

outsourcing of FPGA production and the use of untrusted
third party IPs has also given rise to the threat of Tro-
jan insertion in them. FPGA-based Trojans can be in the
form of IP blocks (hard, soft or firm), which get loaded
onto a generic FPGA fabric and cause malicious activity
(denial-of-service, leakage etc.) on the system in which the
FPGA is deployed. Such FPGA IP-based Trojans are more
or less similar to their counterparts in an ASIC design flow
(with the exception of layout-based Trojans, which are not
applicable to FPGAs). However, Trojans that ‘pre-exist’ in
an FPGA fabric and could potentially be inserted by an
untrusted foundry or vendor pose unique threats and chal-
lenges of their own. FPGAs contain a large volume of recon-
figurable logic in the form of lookup tables, block RAM and
programmable interconnects, which can be used to realize
any arbitrary sequential or combinational design. However,
there might be a significant amount of reconfigurable logic
open to a malicious party (e.g. the FPGA foundry or even
the FPGA vendor) who can load a hardware Trojan and
affect the FPGA-integrated system or compromise the IP
loaded onto the FPGA. These FPGA device-specific hard-
ware Trojans and their effects are explained in [36] and
summarized below.

2.4.1 Activation Characteristic

Hardware Trojans in FPGAs can have activation character-
istics similar to the ones described in Section 3.1 such as
always-on or triggered. However, a unique characteristic of
FPGA device-based hardware Trojans is that they can either
be IP dependent or independent.

— IP-dependent Trojans: A malicious foundry or FPGA
vendor may implement a hardware Trojan that can mon-
itor the logic values of several LUTs in the FPGA
fabric. Once triggered, such Trojans can corrupt other
LUT values, load incorrect values into BRAMs or sab-
otage configuration cells. Since any arbitrary IP may be
loaded onto the FPGA, the malicious foundry or vendor
could distribute trigger LUTs throughout the FPGA so
that the probability of the Trojan triggering and causing
malfunction may increase.

— IP-independent Trojans: A malicious foundry or ven-
dor may also implement a Trojan into an FPGA chip
that is completely independent of the IP loaded onto
it. Such Trojans can occupy a small portion of FPGA
resources and malfunction IP-independent but critical
FPGA resources such as digital clock managers (DCM).
One potential mode of attack would be the Trojan
increasing or decreasing the design clock frequency by
manipulating the configuring SRAM cells of the DCM
unit, which can cause failure in sequential circuits.

2.4.2 Payload Characteristics

FPGA device-based Trojans can also bring about unique
malicious effects, such as causing malfunction of FPGA
resources or leakage of the IP loaded onto the FPGA.

— Malfunction: Hardware Trojans in FPGA devices can
either cause logical malfunction by corrupting LUT or
SRAM values, thereby affecting the functionality of the
implemented IP, or by causing physical damage to the
FPGA device. For example, a triggered hardware Trojan
could reprogram an I/O port set as an input, as an output
while suppressing the configuration cells that prevent
it from being programmed as such. This would cause
a high short-circuit current to flow between the FPGA
and the system it is connected to, thereby leading to
physical device failure.

— IP Leakage: FPGAs today offer bitstream encryption
capabilities in order to protect the IP loaded onto an
FPGA device. However, such encryption only prevents
a direct, unauthorized readback by software. A hard-
ware Trojan may circumvent such protection by either
leaking the decryption key or even the entire IP. The
Trojan may tap the decryption key as it comes out of
non-volatile memory, or the actual decrypted IP , which
could then be exfiltrated either via covert side-channels
(e.g. power traces) or through JTAG, USB or I/O ports.

3 Trojan Benchmarks
3.1 Trojan Benchmark Taxonomy

It is difficult to model a Trojan similar to faults in a cir-
cuit. Although both faults and Trojans can potentially cause
errors in a circuit, one is based on random or systematic
manufacturing defects, and the other is based on malicious
intent. Defects can be modeled but intention cannot. Thus,
to address this issue, we have developed a comprehensive
Trojan taxonomy based on the vulnerabilities in the modern
horizontal design and test processes and the opportunities
adversaries may have at different levels of abstraction.

Over the past few years, there have been efforts to
develop comprehensive hardware Trojan taxonomies based
on Trojan implementation and effect [7]. We have further
improved the taxonomies of the earlier works by including
the physical characteristics of Trojans. Presented in Fig. 2,
the Trojan taxonomy is broken down into the following
categories:

Insertion Phase The design flow consists of several phases
from determining design specification to its assembly and

@ Springer

90

J Hardw Syst Secur (2017) 1:85-102

Hardware
Trojans
I

Insertion Phase

T
Abstraction
Level

| Effect | | Location |

Physical
Characteristics

Activation
Mechanism

—|Speciﬁcation| —| System | |Always on | | Triggered |

| Internally | | Externally |

[

Design Development;
Environment

Fabrication

T

Time-based |

transfer

Physical Ci

[I
Chf-mge. —| Processor | |Distribution| | Size | | Type
Functionalit
Degrade
Performance
User Input | Leak /0
Information

| | Structure |

Memory Parametric | Layout Samel

Layout
Change

Functional

Testing

Condition- Olitput

Gate based

i
e

Layout

Physical

Denial of
Service

Power Supply|

Clock Grid

Fig. 2 A Comprehensive hardware Trojan taxonomy for Trojan benchmark development

packaging. Due to the globalization, circuit tampering can
occur at different stages. For example, a Trojan can be real-
ized by adding some extra gates to a circuit netlist at the
design phase or by changing its masks during the fabrication
step.

Abstraction Level The level of abstraction determines the
control and flexibility an adversary may have on Trojan
implementation. At the system level, a circuit is defined in
terms of modules and the interconnections between them,
limiting an adversary to the modules’ interfaces and their
interactions. On the other hand, all circuit components,
their dimensions, and locations are determined at the phys-
ical level. A Trojan can be inserted in the white/dead
spaces of circuit layout with the least impact on circuit
characteristics.

Activation Mechanism Trojans may always function, or they
can be conditionally activated. Always-on Trojans start as
soon as their host designs are powered on, while condi-
tional Trojans seek specific internal or external triggers to
launch.

Effect Trojans can be characterized based on their effects.
They may change a circuit’s functionality, for example, by
modifying the data path of the processor. Trojans can also
reduce a circuit’s performance or degrade its reliability by
changing its physical parameters.

Location Every part of a circuit can potentially be sub-
jected to Trojan insertion. A Trojan can be distributed
over several regions or focused in one region. A Tro-
jan can tamper with a processor to manipulate its con-
troller or data path units. For example, on a printed
circuit board (PCB) including several chips, an inserted

@ Springer

Trojan on these chips’ interfaces can disturb chip-to-chip
communication.

Physical Characteristic Trojans can alter a circuit’s phys-
ical characteristics, an assault that has many hardware man-
ifestations. A Trojan can be a functional or parametric type.
Functional Trojans are realized by the addition or deletion
of transistors/gates, and parametric Trojans by modification
to wire thickness or any other circuit parameter. Trojan cells
can be distributed loosely or tightly in the physical layout in
white spaces or spaces created by displacing the cells of a
main circuit.

3.2 Sample Trojan Benchmarks

We have developed several Trojan benchmarks that have
been inserted into a variety of benchmark circuits. For a
given circuit, different Trojans can cause different effects,
such as those shown in the effects taxonomy in Section 3.1.
For example, a gate-level Trojan in a circuit may leak an
internal net-value to the primary outputs. On the other hand,
a different Trojan in the same circuit may inject erroneous
values into the internal nets. Thus, for one given benchmark,
we can have several different Trojans inserted into it. Keep-
ing this in mind, we have developed a naming convention
for each unique Trojan inserted in a benchmark circuit. Each
of such ‘Trojan benchmarks’ is named as 7;, where i (a two-
digit number) denotes a unique Trojan. For example, for the
535932 benchmark, the T'1 Trojan benchmark maliciously
activates the scan enable of the circuit and leaks an inter-
nal value through a test output pin. On the other hand, the
T2 Trojan benchmark applies a dominant value to the same
design in functional mode, thereby bypassing four gates
of the main design. Note that 7'1 for one benchmark does
not necessarily mean that the exact same Trojan appears

J Hardw Syst Secur (2017) 1:85-102

91

in a different benchmark with a Trojan benchmark labeled
T1.

4 Trust Benchmarks

A “trust benchmark” is a benchmark circuit (generic circuits
at the RTL, gate or layout level) which has Trojan(s) delib-
erately added to it at hard-to-detect, impactful and/or oppor-
tunistic locations (e.g. rare nodes, layout white-space etc.),
for the purpose of comparing impacts of Trojans and the
effectiveness of different Trojan detection techniques. Our
initial efforts have focused on ‘“static” trust benchmarks,
which we define as those in which the location and size of
the Trojan do not change. Our current trust benchmarks are
available at http://www.trust-hub.org/taxonomy.

Each benchmark comes ready with documentation, that
lists down important features of the trust benchmark such
as trigger probability (for gate/layout level Trojans), exact
effect of the Trojan, input combination required to trigger
Trojan (for RTL/gate level), Trojan-induced delay or capac-
itance etc, size of Trojan/overall circuit etc. Additionally,
for some benchmarks, we have provided a ‘golden model’,
i.e. a version of the same circuit without Trojans, which
can be handy for analyzing the trust benchmarks in terms
of different attack models (see Section 6.4). Finally, for
most of the trust benchmarks, we have included two test-
benches, one of which can be used with the golden model
(for debugging/test purposes) and the other which can be
used to trigger the Trojan. For RTL level trust benchmarks,
the testbench is in the form of Verilog/VHDL testbenches
that have the Trojan trigger specified. For netlist/gate level
benchmarks, exact test patterns to trigger the Trojan are pro-
vided. Finally, the documentation for each trust benchmark
contains the exact form and location of the inserted Trojan.
For example, for RTL level Trojans, the part of the RTL code
that implements the Trojan has been documented. For gate-
level circuits, a snippet of the Trojan netlist has also been
provided. We have disclosed the exact location and imple-
mentation of the Trojan to make it easier for researchers to
present results in terms of detection accuracy. However, it
should be noted that such information should only be used
‘a posteriori’, as taking into account the Trojan implemen-
tation and location beforehand might unfairly bias detection
techniques. Lastly, we note that this is an ongoing effort, and
we are continuously generating various trust benchmarks to
cover the Trojan taxonomy and improve on existing ones.
We encourage the community to submit Trojans to us as
well for inclusion on the website.

In the following, we explain our naming convention for
trust benchmarks. We then present some of the representa-
tive benchmarks from the lot of approximately a hundred
benchmarks developed so far.

4.1 Benchmark Naming Convention

We have developed benchmarks of different sizes, different
types (ASIC, microprocessor, etc.), and with different Tro-
jans covering the taxonomy shown in Fig. 2. Moreover, a
Trojan can be inserted in several circuits and also placed in
different locations within each circuit. Further, it is possible
to modify and update a Trojan to a new version over time.
Based on the above, we develop the following naming con-
vention to assign a unique name to each Trojan benchmark
in a trust benchmark circuit:

DesignName-Tn#$

where

— DesignName: The name of the main design without a
Trojan. There is no limit on the number of letters or
characters for the design name.

— Tn (Trojan number): It is of a maximum two digits.
Note that the same Trojan number in different designs
does not represent the same Trojan.

— # (Placement number): The second to last digit indicates
the different placement of the same Trojan in a circuit
and ranges from O to 9.

— $ (Version number): The last digit in a benchmark name
indicates the version of the Trojan and ranges from O to
9. This is added as a feature in case a new version of the
same Trojan with the same placement has been devel-
oped. The version number will differentiate the older
version from the new one.

For example, MC8051-T1000 indicates that Trojan num-
ber 10 (T10) was inserted in the micro-controller 8051 (MC
8051) at the location number O, and its version is 0. As
another example, dma-T1020 means that Trojan number
10 (T10) was inserted in the DMA circuit at the location
number 2 and its version is 0. As aforementioned, Trojan
T10 in DMA is not necessarily the same as Trojan T10 in
MCR051.

4.2 Sample Trust Benchmarks

In the following, we present some of the benchmarks with a
brief description of their enclosed Trojan.

— Insertion Phase - Fabrication: Trojans can also be

realized by adding/removing gates or changing the cir-
cuit layout during GDSII development, and the mask
during fabrication.
Sample Benchmark: EthernetMAC10GE-T710 con-
tains a Trojan triggered by a combinational comparator
circuit which seeks a specific 16-bit vector. The prob-
ability of Trojan activation in this case is 6.4271e-23.
When the Trojan is triggered, its payload gains control
over an internal signal in the circuit.

@ Springer

http://www.trust-hub.org/taxonomy

92

J Hardw Syst Secur (2017) 1:85-102

— Abstraction Level - Layout: Trojans can be realized by

varying circuit mask, adding/removing gates, or chang-
ing gate and interconnect geometry to impact circuit
reliability.
Sample Benchmark: EthernetMAC10GE-T100 con-
tains a Trojan on a critical path. The net fault_sm0/n80
is widened to increase coupling capacitance, enabling
crosstalk.

— Activation Mechanism - Triggered Externally: Tro-
jans become activated under certain external condi-
tions, such as by an external enable input.

Sample Benchmark: RS232-T1700 contains a Trojan
triggered by a combinational comparator. The trigger
input probability is 1.59e-7 and it is externally con-
trolled. Whenever the Trojan gets triggered, its payload
gains control over the output xmit_doneH signal.

— Effect - Change Functionality: After activation, a Tro-
jan will change the functionality of a circuit.
Sample Benchmark: RS232-T1200 contains a Trojan
triggered by a sequential comparator with probabil-
ity is 8.47e-11. Whenever the Trojan gets triggered,
its payload gains control over the output xmit_doneH
signal.

— Location - Power Supply: A Trojan can be placed in
the chip power network.

Sample Benchmark: EthernetMAC10GE-T400 is
modified with narrow power lines in one part of the
circuit layout.

— Physical Characteristic - Parametric: A Trojan can
be realized by changing circuit parameters like wire
thickness.

Sample Benchmark: EthernetMAC10GE-T100 con-
tains a Trojan on the critical path. Specifically, the net
fault_sm0/n80 is widened.

Table 2 presents a complete list of trust benchmarks that
have been developed so far. They are categorized based
on the Trojan taxonomy. The number of trust benchmarks
available for each type, along with the names of the main
circuits/benchmarks the Trojans have been inserted into are
also presented. For instance, the table shows that 25 Trojans
are inserted at the gate-level, 51 at the register-level, and
12 at the layout level, under the row ‘Abstraction Level’.
As another example, the ‘effect’ row shows that 35 Trojans
change circuit functionality, 3 degrade circuit performance,
24 leak information to the outside of a chip, and 34 will
perform a denial-of-service attack when activated. Note
that some benchmarks fall under more than one category.
Currently, there are a total of 91 trust benchmarks on the
Trust-Hub website.

@ Springer

5 Design Vulnerability Analysis

In order to create the Trojans and trust benchmarks, we have
created a suite of tools that first evaluate a design for vulner-
ability to Trojan insertion. This analysis has been performed
at the RTL, gate and layout levels. In each case, vulner-
abilities such as rare events, transition probabilities, white
spaces etc. have been extracted and subsequently exploited
to insert the hardware Trojan circuitry as part of the trust
benchmarks.

5.1 Vulnerability Analysis at the RTL Level

Due to the increased use of 3PIP in designs, it is also nec-
essary to conduct vulnerability analysis at the behavioral
or RTL level. Given a RTL IP, we need to carefully ana-
lyze statements that are rarely activated and check if certain
signals are propagated to the primary outputs. A malicious
3PIP can use such features to create a behavioral Trojan that
is difficult to trigger and whose effects cannot be observed
at the outputs on regular functional testing. In order to
quantify such vulnerabilities, we have proposed two broad
metrics [20]:

— Statement Hardness: This metric analyzes the rarity of
the conditions under which a statement executes in RTL
code. This metric is quantified by (U[g:iﬁ:])~!, where
U, L are the upper and lower limits of the value range
for a control signal (set by a conditional statement such
as [F) and Uy, L¢ are the declared upper and lower
limits of the value range for the same control signal (set
by an assignment/declaration statement). This indicates
that statements/control signals that are highly nested by
multiple conditional statements are harder to execute
and are the most likely targets for Trojan insertion at the
behavioral level.

— Observability: This metric denotes the ease with which
a signal can propagate to the primary output of a design.
In order to quantify this metric, a data graph is con-
structed from the RTL code. Each node in the graph
represents a control signal in the RTL code, and the
edges represent the flow of data in the code. Each sig-
nal (with respect to a destination node) is assigned a
‘0’ for observability if its destination node is not a pri-
mary output. If a signal is considered with respect to a
destination node that serves as a primary output, it is
assigned a observability figure equal to the sum of the
weight of the assignment statements where the signal is
assigned to the destination node.

Using these two metrics, the b0l benchmark from the
ITC’99 benchmark set was analyzed. The maximum state-
ment hardness for this benchmark was 64, with a maximum
observability of 0.5. In contrast, the 05 benchmark, a

J Hardw Syst Secur (2017) 1:85-102

93

Table 2 Trust benchmark details

Category Trojans Main Circuits
Trojan Type # of Trust Benchmarks
Insertion Phase Specification 0 -
Design 80 AES, BasicRSA, EthernetMAC10GE, MC8051,
PIC16F84, RS232, 515850, s35932, s38417,
$38584, vga_lcd, wb_conmax
Fabrication 8 EthernetMAC10GE, MultPyramid
Testing 0 -
Assembly and Package 0 -
Abstraction Level System 0 -
Development Environment 0 -
Register Transfer 51 AES, b19, BasicRSA, MC8051,
PIC16F84, RS232, wb_conmax
Gate 25 b19, EthernetMAC10GE, RS232, s15850,
$35932, 538417, s38584, vga_lcd, wb_conmax
Layout 12 EthernetMAC10GE, MultPyramid, RS232
Physical 0 -
Activation Mechanism Always On 11 AES-T100, EthernetMAC10GE, MultPyramid
Triggered 79 AES, b19, BasicRSA, EthernetMAC10GE,MC8051,
MultPyramid, PIC16F841, RS232,s15850,
$35932, 538417, s38584, vga_lcd,wb_conmax
Effect Change Functionality 35 b19, EthernetMAC10GE, MC8051, RS232,
s15850, s35932, 538417, s38584, vga_lcd,wb_conmax
Degrade Performance 3 EthernetMAC10GE, MultPyramid, s35932
Leak Information 24 AES, BasicRSA, PIC16F84, s35932, s38584
Denial of Service 34 AES, BasicRSA, EthernetMAC10GE, MC8051,
MultPyramid, PIC16F84, RS232, s15850, s35932,
s38417, s38584, vga_lcd, wb_conmax
Location Processor 51 AES, b19, BasicRSA, MC8051, MultPyramid, PIC16F84,
s15850, $35932, s38417, s38584, vga_lcd
Memory 0 -
1/0 4 MC8051, wb_conmax
Power Supply 2 MC8051-T300, wb_conmax
Clock Grid 2 EthernetMAC10GE
Physical Characteristics ~ Distribution 2 b19
Size 0 -
Type 86 AES, b19, BasicRSA, EthernetMAC10GE,
MC8051, MultPyramid, PIC16F84, RS232,515850,
$35932, 538417, s38584, vga_lcd,wb_conmax
Structure 8 b19, EthernetMAC10GE, MultPyramid
Total NA 88 NA

considerably large benchmark, has a statement hardness of

4.4 x 107 with a observability of 0. This indicates that com-

pared to the b01 benchmark, the b05 benchmark has heavily
nested statements along with primary inputs that do not
propagate all the way to the primary output, making it more

vulnerable to Trojan insertion.

5.2 Vulnerability Analysis at the Netlist Level

Functional hardware Trojans are realized by adding or
removing gates; therefore, the inclusion of Trojan gates
or the elimination of circuit gates affects circuit side-

channel signals such as power consumption and delay

@ Springer

94

J Hardw Syst Secur (2017) 1:85-102

characteristics, as well as the functionality. To minimize
a Trojan’s contribution to the circuit side-channel signals,
an adversary can exploit hard-to-detect areas (e.g. nets) to
implement the Trojan. Hard-to-detect areas are defined as
areas in a circuit not testable by well-known fault-testing
techniques (stuck-at, transition delay, path delay, and bridg-
ing faults) or having negligible impact on the circuit side-
channel signals. We propose a vulnerability analysis flow to
identify such hard-to-detect areas in a circuit. These areas
provide opportunities to insert hard-to-detect Trojans and
invite researchers to develop techniques to make it difficult
for an adversary to insert Trojans.

As Fig. 3 shows, our proposed vulnerability analysis
flow performs power, delay, and structural analyses on a
circuit to extract the hard-to-detect areas. Any transition
inside a Trojan circuit increases the overall transient power
consumption; therefore, it is expected that Trojan inputs
or triggers will be supplied by nets with low transition
probabilities to reduce activity inside the Trojan circuit.

The Power Analysis step in Fig. 3 is based on analyzing
switching activity; it determines the transition probability of
every net in the circuit assuming the probability of 0.5 for
‘0’ or ‘I’ at primary inputs and at memory cells’ outputs.
More details regarding the transition probability calculation
can be found in [26]. Then, nets with transition probabil-
ities below a certain threshold are considered as possible
Trojan inputs. The Delay Analysis step performs path delay
measurement based on gates’ capacitance. This allows us
to measure the additional delay induced by the Trojan, by
knowing the added capacitance to circuit paths. The Delay
Analysis step identifies nets on non-critical paths as they are
more susceptible to ‘smart’ Trojan insertion, which would
not change the circuit delay. To further reduce Trojan impact
on circuit delay characteristics, the delay analysis tool also
reports the paths to which a net belongs to avoid select-
ing nets belonging to different sections of the same path.
The Structural Analysis step executes the structural tran-

Gate-Level
Netlist

| |

Power Delay Structural
Analysis Analysis Analysis

Nets with P(Transition) Untestable Nets
< Threshold

Nets on non-critical
and unique paths

Unique Hard-to-
Detect Nets

Fig. 3 The vulnerability analysis flow

@ Springer

sition delay fault testing to find untestable blocked and
untestable redundant nets. Untestable redundant nets are
not testable because they are masked by a redundant logic,
and they are not observable through the primary outputs or
scan cells. Untestable blocked nets are not controllable or
observable by untestable redundant nets. Creating Trojan
inputs/triggers using these untestable nets hides the Trojan
impact on delay variations.

At the end, the vulnerability analysis flow reports a list
of unique hard-to-detect nets in a circuit. This list includes
untestable nets with low transition probabilities and also
those nets with low transition probabilities on unique non-
critical paths. Note that when a Trojan impacts more than
one path, it provides greater opportunities for detection.
Using unique paths and avoiding shared ones make a Tro-
jan’s contribution to the affected paths’ delay minimal. This
means that the Trojan impact on delay could be masked
by process variations. The reported nets are also ensured
to be untestable by structural test patterns used in produc-
tion tests. They also have low transition probabilities so that
the Trojans will negligibly affect circuit power consump-
tion. As the nets are chosen from non-critical paths without
any shared segments, it would also be extremely difficult to
detect Trojans by practical delay-based techniques.

The vulnerability analysis flow can be implemented
using most electronic design automation (EDA) tools, and
the complexity of the analysis is linear with respect to the
number of nets in the circuit. We have applied the flow to
the Ethernet MAC 10GE circuit from http://opencores.org,
which implements 10Gbps Ethernet Media Access Control
functions. Synthesized at 90nm Synopsys technology node,
the Ethernet MAC 10GE circuit consists of 102,047 com-
ponents, including 21,830 flip-flops. The Power Analysis
shows that out of 102,669 nets in the circuit, 23,783 of them
have a transition probability smaller than 0.1, 7003 of them
smaller than 0.01, 367 of them smaller than 0.001, and 99
of them smaller than 0.0001. The Delay Analysis indicates
that the largest capacitance along a path, representing path
delay, in the circuit is 0.06572 pF, and there are 14,927 paths
in the circuit whose path capacitance are smaller than 70%
of the largest capacitance, assuming that paths longer than
70% in a circuit can be tested using testers. The Structural
Analysis finds that there is not a single untestable fault in
the circuit. By excluding nets sharing different segments of
one path, there are 494 nets in the Ethernet MAC 10GE cir-
cuit considered to be areas where Trojan inputs could be
used while ensuring the high difficulty of detection based
on side-channel and functional test techniques.

5.2.1 Creating the Trojans

We have also created a separate flow that can create and val-
idate hardware Trojans, given a flattened netlist of a circuit

http://opencores.org

J Hardw Syst Secur (2017) 1:85-102

95

design [9]. In order to create these Trojans, the flow first
applies a random set of test vectors to the design, from
which a list of rare nodes are identified. These rare nodes
are extracted by calculating the signal probabilities at each
node and picking from those nodes whose probabilities are
less than a pre-defined threshold (e.g., 0.0001). A hardware
Trojan is then created by randomly sampling from these
rare nodes. For example, if a 2-trigger hardware Trojan is
required, two nodes from the list of rare nodes are randomly
picked and an instance of a hardware Trojan is created in
a separate file. The same process can be repeated for cre-
ating a list of Trojans with an arbitrary number of triggers
and also, an arbitrary number of Trojans. Once these Trojans
are created, they are functionally validated using Synopsys
Tetramax. In this step, we make sure that the Trojans we
have created are in fact triggered by selected test patterns
(even though those patterns may be extremely rare, which
is actually desirable for a Trojan). This step is necessary
because an adversary will never insert a functional Trojan
that will never get triggered. After validation, the Trojans
can be manually inserted into the victim netlist and linked
to a desirable payload that can cause malicious alternations
to the design.

5.3 Vulnerability Analysis at the Layout Level

In addition to performing vulnerability analysis at the netlist
level, we have also implemented a unique flow to identify
Trojan-insertion prone areas in a circuit layout [37]. Such a
vulnerability analysis flow at the layout level is critical as
an untrusted foundry will likely launch a Trojan-insertion
attack at the layout level after it gains the entire design
from a system integrator. A malicious foundry will likely
look for empty regions or ‘whitespaces’ in a circuit lay-
out, with available routing channels in metal layers above
the empty regions. Such whitespaces are very common in
many designs today. For example, we have analyzed the
ITC99 b15 benchmark layout, which consists of 3296 cells
and evaluated the amount of available white space in the
design. Figure 4 shows the distribution of whitespace in the
benchmark, in units of INVXO0, which is the smallest gate
in the b15 benchmark layout. The entire layout was divided
into grids, with the grid area equal to W2, where W is the
width of the largest cell in the synthesized design library.
The layout example shows that there is considerable amount
of white spaces in areas closer to the layout boundaries,
which averages to about 41.41 units of INVXO. Since such
whitespaces are inevitable in any layout design, the threat
of Trojan insertion is very realistic as a Trojan size could
be as small as a few gates. Further, along with the whites-
pace, we have also analyzed the average routing channels
available above the whitespaces, which might be required
to complete the Trojan design. Out analysis shows that for

a 9-metal layer implementation, the b15 benchmark layout
has 0.84 average unused routing channels available per unit
grid.

However, it should be noted that the mere presence of
whitespace and routing channels is not a vulnerability that
a smart adversary will exploit. In order to bypass detec-
tion techniques, a malicious party, whether it is an untrusted
foundry with the complete layout or a malicious insider
in the design house, will make sure that he/she designs a
‘stealthy’ Trojan. In order to do this, a vulnerability anal-
ysis similar to the one we described in Section 5 must be
performed in conjunction with the white space/available
routing channel analysis we described above. The first step
in doing so is to identify the non-critical paths in the cir-
cuit netlist and match those nets to the paths in the layout.
A quick analysis of the b15 benchmark circuit shows that,
on average, there are about 17 nets per grid whose delay is
less than 75% of the critical path of the circuit. Such nets
can potentially be exploited to insert a Trojan, as the Trojan-
induced capacitance (due to the added wiring connections)
and the resulting delay can be evaded from Trojan detection
techniques based on path delay. The second step is to insert
the Trojan in such a location that its trigger is attached to
nets with very low transition probabilities, so that the prob-
ability of Trojan activation gets reduced. Figure 5 shows
the distribution of nets whose transition probability is less
than 10™*, and the delay is less than 75% of the critical
path delay, for the b15 benchmark. Clearly, such nets at the
layout level, which are also near to layout regions with suf-
ficient amount of whitespace, indicates the vulnerability of
the circuit to layout-level Trojan insertion. For example, the
nets around row 8 and column 6 in the layout grid in Figs. 4
and 5 have > 10 nets available for implementing a Trojan
and its trigger.

6 Trust Benchmark Evaluation
6.1 Trojan Evaluation Suite

Hardware Trojans have a stealthy nature; they rarely activate
and make limited contributions to circuit characteristics.
To ensure that each Trojan inserted in a trust benchmark
does not get activated by test patterns used in produc-
tion tests, we develop an automatic Trojan Evaluation Suite
(TES) to investigate the effectiveness of different types of
test patterns at detecting hardware Trojans. TES synthe-
sizes a circuit, generates structural test patterns, applies the
patterns to the circuit, and monitors circuit switching activ-
ity, including transitions inside Trojan circuits. The flow is
implemented using Synopsys tools with additional in-house
ones, though it is also possible to develop the same flow
with other commercial tools.

@ Springer

96

J Hardw Syst Secur (2017) 1:85-102

Fig. 4 Distribution of
whitespace across the b15 layout

100

90 -

40 -

Whitespace Density (unit of INVX0)
8

As shown in Fig. 6, the TES flow consists of two main
steps: (1) pattern generation and (2) pattern evaluation. To
generate structural test patterns, a circuit is first synthe-
sized by the Synopsys Design Compiler. The synthesized
netlist is passed to the Synopsys Automatic Test Pattern
Generation (ATPG) tool, TetraMax, to generate structural
stuck-at-fault (SAF), transition-delay-fault (TDF), and path-
delay-fault (PDF) fault test patterns. To generate path-delay
fault test patterns, the synthesized netlist is also passed to
Synopsys PrimeTime to obtain circuit timing information
and critical paths.

To automatically apply patterns and observe switch-
ing activity in the main circuit and Trojan circuits dur-
ing the pattern evaluation step, we develop a program in
the Synopsys Verilog Compiler Simulator (VCS) by using

Fig. 5 Distribution of nets with
low transition probability and
minimal impact on critical path
delay in the b15 layout

[
N

ey
o

The number of nets with low transition
probabilities on non-critical paths

Column

Programming Language Interface (PLI) routines. The pro-
gram fetches patterns generated by TetraMax and applies
them to the circuit. Every transition on every net in the
circuit is recorded during the simulation, and the test appli-
cation also determines whether the Trojan is ever activated.

A Trojan can be inserted into a circuit before or after
synthesizing the circuit. TES makes the detailed analysis
of Trojan circuits possible, and any transition in the Trojan
circuit can be recorded. A combinational comparator Tro-
jan, shown in the example in Fig. 7, was inserted into the
Ethernet circuit. The Trojan trigger sought a specific 16-
bit vector. Whenever the Trojan was triggered, its payload
gained control over an internal net. 5218 random functional
vectors were applied. Simulation took 104386 ns, and in
total there were 106,664,486 transitions in the circuit and

Column

_—— .-----0

@ Springer

g8 9 10 11 12

M
“N
‘“-l
&
o
~N

J Hardw Syst Secur (2017) 1:85-102

97

RTL (1)
Generating
Patterns for
Trust
DC Compiler Benchmark

A
Design Paths

Tetramax

TDF

Pattern
Evaluation

Fig. 6 The Trojan evaluation suite (TES)

4,229 transitions inside the Trojan circuit, though the Trojan
never became fully activated (i.e., Trojan’s payload never
changed the circuit net value).

Without having any knowledge about Trojan insertion, it
is possible to use TES to evaluate the effectiveness of a test
pattern in generating switching on nets with low transition
probability. This information can be used to reduce authenti-
cation time by selecting test vectors which create maximum
switching on hard-to-detect nets.

In8 In7 In6 In5 In4 In3 In2 Inl

In9 ——
In10 ——
In11 ——
In12 ——
In13 ——

In14 ——
In15
In16

Do_

From the main circuit

Fig.7 An example comparator Trojan

6.2 Trojan Detectability

A Trojan’s impact on circuit characteristics depends on
its implementation. Trojan inputs tapped from nets with
higher transition probabilities will aggrandize switching
activity inside the Trojan circuit and increase its contribu-
tion to circuit power consumption. Furthermore, the Trojan
might affect circuit delay characteristics due to additional
capacitance induced by extra routing and Trojan gates. To
quantitatively determine the difficulty of detecting a gate-
level Trojan, a procedure is developed to determine Trojan
detectability based on a Trojan’s impact on delay and power
side-channels across different circuits.

The proposed Trojan detectability metric (Tyerecrapitity)
is determined by (1) the number of transitions in the Tro-
jan circuit and (2) extra capacitance induced by Trojan gates
and their routing. This metric is designed to be forward-
compatible with new approaches for Trojan detection by
introducing a new variable, for example a quantity related
to the electromagnetic field.

Transitions in a Trojan circuit reflect Trojan contribution
to circuit power consumption, and Trojan impact on circuit
delay characteristic is represented by measuring the added
capacitance by the Trojan. Assuming Ar,ojan T€presents the
number of transitions in the Trojan circuit, St,¢jan the Tro-
jan circuit size in terms of the number of cells, A7j e, the
number of transitions in the Trojan-free circuit, S7; Fre. the
Trojan-free circuit size in terms of the number of cells, T1C
the added capacitance by Trojan as Trojan-induced capaci-
tance, and Crj Fre. the Trojan-affected path with the largest
capacitance in the corresponding Trojan-free circuit, Trojan
detectability (Tperecrabitiry) at the gate-level is defined as

TDetectability = |t (D

where

t = ATrUjun/STrszm TIiC (2)
- ATjFree/STjFree ’ CTjFree

Tperectabitity at the gate-level is calculated as follows:

1. Apply random inputs to a Trojan-free circuit and obtain
the no. of transitions in the circuit (A7; free)-

2. Apply the same random vectors to the circuit with
a Trojan and obtain the number of transitions in the
Trojan circuit (Ar,ojan)-

3. Perform the Delay analysis on the Trojan-free and
Trojan-inserted circuits.

4. Obtain the list of paths whose capacitance are changed
by the Trojan.

5. Determine the Trojan-affected path with the largest
capacitance in corresponding Trojan-free (Crj Fre.) and
the added capacitance (T IC).

6. Form the vector ¢ (2) and compute Tperecrapitiry (the
absolute value/modulus of the vector ¢) as defined in

@ Springer

98

J Hardw Syst Secur (2017) 1:85-102

Eq. (1). Note that Trojan detectability represents the
difficulty of detecting a Trojan.

As an example, the comparator Trojan, shown in Fig. 7,
is inserted at four different locations, namely TjG-Locl,
TjG-Loc2, TjG-Loc3, and TjG-Loc4 (G represents “gate
level”), in the Ethernet MAC 10GE circuit, and Table 3
shows their detectability. The Ethernet MAC 10GE circuit
consists of 102047 cells, Column 3 S7; Fre, While the Tro-
jan size with 12 cells, Column 5 S7,4jqn, is only about
0.011% of the entire circuit. TjG-Loc4, in Row 5, experi-
ences the largest switching activity (13484 in Column 4)
and relatively induces high TIC (0.00493 pF in Column 6).
It is expected that TjG-Loc4 will be the easiest Trojan to be
detected due to more impact on circuit side-channel signals,
and in turn the detectability of TjG-Loc4 (Tperecravitity =
1.07911 in Column 8) is higher than the others. Although
the induced capacitance by TjG-Loc2 (0.00497 pF), in
Row 3, is more than the capacitance induced by TjG-Locl
(0.00029 pF), in Row 2, TjG-Loc1 has more significant con-
tribution into circuit switching activity, 10682 versus 4229
in Column 4. Therefore, TjG-Locl has the second largest
detectability (0.85166) after TjG-Loc4. Among TjG-Loc2
and TjG-Loc3, although TjG-Loc3, in Row 4, has slightly
larger induced capacitance (0.00501 pF), TjG-Loc2 experi-
ences more switching activity (4229 versus 3598 in Column
4). The two Trojans have close detectability where TjG-
Loc2 stands above and TjG-Loc3 remains the hardest Trojan
to be detected with the lowest Trojan detectability.

6.3 Vulnerability and Detectability

Using the vulnerability analysis flow and the detectabil-
ity metric proposed in Section 6.2, we have evaluated the
vulnerability of the benchmark circuits to Trojan insertion
and have presented detectability results for Trojans inserted
into these vulnerable circuits. Tables 4 and 5 show detailed
analysis of a selected number of gate-level benchmarks. In
Table 5, Column 3 indicates that b19 circuit, in Row 2,
is the largest circuit in size (62835) among the selected
circuits. Table 4 also shows the number of nets with tran-
sition probability less than 0.0001 in b19, 4530 in Row 2
and Column 6, is larger than the other circuits, and b19

has considerable number of paths whose capacitances are
less than 70% of its critical path’ capacitance, 474358 in
Column 8. Further, there are eight untestable faults is b19,
in Column 9. These provide significant opportunity for
implanting Trojans resilient against power and delay side-
channel analyses in b19. Table 5 confirms that b19-T100
with Tperecrapitiry = 0.02498, in Column 8, is the second
most difficult Trojan to detect as no transition inside the
Trojan is observed, 0 in Column 4, and it induces a small
capacitance, 0.00095 pF in Column 6, on a non-critical
path, 0.03785 pF in Column 7. s38584-T200, in Row 7,
has the lowest detectability, 0.01390 in Column 8; similar
to b19-T100, there is no switching activity in s38584-T200,
0 in Column 4, and s38584-T200 induces less capacitance,
0.00041 pF in Column 6, on a shorter path, 0.02984 pF
in Column 7, compared to b19-T100. We can also note
that trust benchmark s35854 — 7300 has high detectabil-
ity (2.84578), as the Trojan gate count is fairly high (731)
and the resulting Trojan induced capacitance (7' /C) is also
high. This makes the Trojan easier to detect through delay
side-channels. To summarize, Fig. 8 shows the Tyerecrapitity
metric figures for all the gate-level benchmarks on Trust-
Hub, which show varying levels of detection difficulty,
based on the aforementioned metric.

6.4 Benchmarks and Attack Models

As we discussed in Section 1, the threat of hardware Trojans
can be explained in the context of various adversarial/attack
models. In this section, we highlight how each benchmark
that we have developed can fit a particular attack model.
This is necessary as the motivation behind any Trojan detec-
tion/prevention technique cannot be fully understood with-
out specifying its context/scope in terms of an attack model.
Below, we present our methodology for classifying the trust
benchmarks in the form of a case study on a benchmark.
Additionally, we also point out what changes/additions can
be made to a benchmark in order to fit it to a particular attack
model.

EthernetMAC10GE-T200 The benchmark only comes
with the .def (Layout) file and does not include a golden
layout. However, there is a golden netlist available. We

Table 3 The detectability of the comparator Trojan placed at four different locations in Ethernet MAC 10GE circuit

Trojan ATjFree STjFree ATrojan STrojan TIC(PF) CTjFree (PF) TDeteCtahility
TjG-Locl 106,664,486 102,047 10,682 12 0.00029 0.04136 0.85166
TjG-Loc2 106,664,486 102,047 4,229 12 0.00497 0.07211 0.34413
TjG-Loc3 106,664,486 102,047 3,598 12 0.00501 0.04969 0.30403
TjG-Loc4 106,664,486 102,047 13,484 12 0.00493 0.05260 1.07911

@ Springer

J Hardw Syst Secur (2017) 1:85-102

99

Table 4 Design vulnerability analysis of a selected number of Trojan-free circuits

Circuit Power Analysis Delay Analysis Structural Analysis
#Nets < 0.1 <0.01 <0.001 < 0.0001 Ceritical path Capacitance(pF) < 70% of Critical Path Capacitance # Untestable faults

b19 70,259 14,482 8,389 5,533 4,530 0.37724 474,358 8

s38417 5,669 589 291 219 69 0.05015 41,901 0

s38584 7,203 817 197 85 30 0.04467 27,689 0

$35932 6,269 0 0 0 0 0.00851 3,156 0

can classify this particular benchmark with different attack
models as follows:

A: No (This benchmark lacks any RTL level descrip-

tion, and going from a gate-level description to a behav-

ioral RTL description is non-trivial. Thus, it does not fit

attack model A.)

— B: Possible to adapt (The golden netlist can be used to
generate a golden layout, which is required in attack
model B, since a design house will always have a golden
layout if only the foundry is untrusted.)

— C: Possible to adapt (A separate Trojan can be inserted
into the golden netlist at the gate-level, and a layout can
be generated. However, the original Trojan-inserted lay-
out would not be needed to fit the benchmark to this
attack model.)

— D: No (The RTL level description is not available, due
to which a Trojan insertion at the RTL level, emulating
an untrusted 3PIP vendor, cannot be performed.)

— E: No (Same as above, due to lack of RTL Ilevel
description)

— F: No (Same as above.)
— Gt Possible to adapt (In order to fit this attack model, a
gate-level Trojan can be inserted into the golden netlist
and converted to a layout. From the T200 benchmark,
the particular Trojan can be observed and inserted into
the newly generated layout, thereby emulating both an
untrusted SoC developer and an untrusted foundry.)

A count of the number of trust benchmarks which are
available on the Trust-Hub website and fit the seven attack
models, is shown in Fig. 9. Clearly, most of the benchmarks
can be further expanded to emulate the scenario where
multiple entities in the supply chain are untrusted.

7 Future Work

Although we have developed a total of 91 trust benchmarks
and the corresponding tools, there is still room for more
improvement. As part of future work, we plan to explore the
following scenarios and develop appropriate solutions.

— Including additional trust benchmarks: The set of
benchmarks we have developed are only a small set
of possible hardware Trojans that can be designed. We
plan to update/add more Trojans and trust benchmarks
to the Trust-Hub website as part of our ongoing work.

— Fitting new attack models: As seen from Fig. 9,
there are already a large number of trust benchmarks
that can be adapted to fit attack models E, F and G,
which would involve inserting Trojan(s) at two or more
levels of abstraction into a single benchmark circuit.
For example, a design starting at the RTL level can
be inserted with Trojan 1 and synthesized to a netlist.
After layout generation from the netlist, Trojan 2 can
then be inserted at the layout level. This would capture

Table 5 The detectability (Tpesecranitiry) of a selected number of gate-level Trojans inserted in the circuits in Table 4

Trojan ATjFree STjFree ATrojan STrojan TIC(pF) CrjFree(pF) Tpetectability
b19-T100 4,037,383 62,835 0 83 0.00095 0.03785 0.02498
$38417-T100 2,717,682 5,329 59 11 0.00417 0.03234 0.13939
$38417-T200 2,717,682 5,329 1,328 11 0.00531 0.03052 0.41085
$38417-T300 2,717,682 5,329 257 15 0.00046 0.03078 0.04847
$38584-T100 423,986 6,473 705 9 0.00095 0.01504 1.25877
$38584-T200 423,986 6,473 0 83 0.00041 0.02984 0.01390
$38584-T300 423,986 6,473 16 731 0.01246 0.00438 2.84578
$35932-T100 353,304 5,426 354 15 0.00049 0.00699 0.86644
$35932-T200 353,304 5,426 733 12 0.00316 0.00973 1.26280
$35932-T300 353,304 5,426 738 36 0.00050 0.00823 0.37533

@ Springer

100 J Hardw Syst Secur (2017) 1:85-102
3 performing the vulnerability analysis flow. In order
® EthernetMAC10GE ° . .
o R5232 to create dynamic trust benchmarks, we require auto-
2.5
o b19 matic payload and trigger identification of a circuit at
% 2 .2222; different levels (RTL, gate and layout). While trigger
g s 535932 identification is straight-forward (as we have shown in
ﬁ ° ° Section 5), automating payload identification for any
=, . arbitrary circuit is a non-trivial problem, which must
05 be addressed. Nonetheless, the detectability metric we
L]
Te o ® ‘e . have proposed would still be useful in characterizing the
0 e o o 000 e . . .
0 2 4 6 8 10 12 14 16 18 20 22 24 Trojan benchmarks after they have been inserted into a
Gate-Level Benchmark # circuit.
. -) o — Testbench development: In order to help in the use of
Fig. 8 Detectability metric for gate-level Trojans in trust benchmarks

Fig.

the essence of attack model F (fabless SoC design
house).

Larger benchmarks: Most of the benchmarks cur-
rently available are fairly small in size and might not
capture the Trojan detection problem in the context of
real-life industrial designs, at which point some detec-
tion strategies might become completely infeasible. Thus,
it would make sense to develop larger trust benchmarks.
SoC scenario: We also plan to put up SoC designs that
combine various IPs (at different abstraction levels) into
one single design. This emulates a scenario where mul-
tiple IP vendors are untrusted, and is representative of
the SoC development process today.

Dynamic trust benchmark generation: While the
Trojans we have created are inserted only into spe-
cific benchmark circuits, Trojan benchmarks, which are
arbitrary Trojan circuits (at the RTL, gate or layout
level) with an arbitrary number of gates/cells, should
ideally be applicable for insertion into any given cir-
cuit. The Trojan benchmarks we have developed have
been manually inserted into benchmark circuits after

the benchmarks, we are constantly adding and refining
testbench programs that can help researchers to run the
benchmark with or without the Trojan and exactly acti-
vate it to observe the effects on delay, power and other
side-channels.

— FPGA device Trojans: In Section 2.4, we delved into
hardware Trojans that can be inserted into the FPGA
fabric, while being dependent or independent of the IP
on the FPGA. Currently, the FPGA-implementable trust
benchmarks on Trust-Hub only cover the threat of an
untrusted IP vendor, where the Trojan is a part of the IP.
Trojans that are part of the FPGA device (e.g. DCM cor-
ruptors, IP leak), which would need to be implemented
through the FPGA firmware, is part of our future work.

8 Conclusion

The hardware trust community needs common ground to
more effectively address the Trojan detection problem. As
no standard measurements, benchmarks, or tools have pre-
viously been developed, we have put our effort into devel-
oping tools that can aid us in generating trust benchmarks.

9 Classifying the number ® Matches Attack Model M Can be adapted to Attack Model
of trust benchmarks that fit 100

different attack models

920

80

70

OF TRUST BENCHMARKS
g

@ Springer

C D E F G

ATTACK MODEL

J Hardw Syst Secur (2017) 1:85-102

101

As part of this toolset, the vulnerability analysis flow deter-
mines areas in a circuit that are more probable to be used
for Trojan implementation. Further, we developed an auto-
matic Trojan evaluation suite to measure the resiliency of
hardware Trojans. Then, we defined the Trojan detectability
metric to quantify Trojan impact on circuit power consump-
tion and circuit performance, thereby giving us an idea of
its stealthiness. Using these tools and metrics, we generated
a large number of trust benchmarks, which are available at
trust-hub.org for researchers to evaluate their detection tech-
niques. These benchmarks are now currently being used in
developing the state-of-the-art in hardware Trojan detection
techniques [12, 21, 25, 28, 38, 39]. As part of our future
work, we plan to expand the current benchmarks to fit more
attack models, develop Trojan benchmarks and also, add
newer benchmarks to the repository to enhance outcomes of
Trojan detection research.

Acknowledgments This work was supported in part by the National
Science Foundation (NSF) under grant 1513239.

References

1. Marinissen E, Iyengar V, Chakrabarty K (2002) A set of bench-
marks for modular testing of socs. In: Proceedings International
Test Conference, 2002, pp 519-528

2. Brglez F (1985) A neutral netlist of 10 combinational benchmark
circuits and a target translation in fortran. In: ISCAS-85

3. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of
sequential benchmark circuits. In: IEEE international symposium
on circuits and Systems, 1989, vol 3

4. Lee C, Potkonjak M, Mangione-Smith WH (1997) Mediabench:
A tool for evaluating and synthesizing multimedia and commu-
nicatons systems. In: Proceedings of the 30th annual ACM/IEEE
international symposium on microarchitecture, ser. MICRO 30.
IEEE Computer Society, Washington, DC, pp 330-335. [Online].
Available: http://dl.acm.org/citation.cfm?id=266800.266832

5. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T,
Brown RB (2001) Mibench: a free, commercially representative
embedded benchmark suite. In: 2001 IEEE international workshop
on workload characterization, 2001. WWC-4, pp 3-14

6. Salmani H, Tehranipoor M, Karri R (2013) On design vulnerability
analysis and trust benchmarks development. In: 2013 IEEE 31st
international conference on computer design (ICCD), pp 471-474

7. Tehranipoor M, Koushanfar F (2013) A survey of hardware trojan
taxonomy and detection. IEEE Design Test 99:1-1

8. Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016)
Hardware Trojans: Lessons learned after one decade of research.
ACM transactions on design automation of electronic system (To
Appear)

9. Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhu-
nia S (2009) Mero: A statistical approach for hardware tro-
jan detection. In: Proceedings of the 11th international work-
shop on cryptographic hardware and embedded systems, ser.
CHES °09. Springer, Berlin, pp 396—410. [Online]. Available:
doi:10.1007/978-3-642-04138-9_28

10. Banga M, Hsiao MS (2010) Trusted rtl: Trojan detection method-
ology in pre-silicon designs. In: 2010 IEEE international sympo-
sium on hardware-oriented security and trust (HOST), pp 56-59

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Banga M, Hsiao M (2009) A novel sustained vector technique
for the detection of hardware trojans. In: 2009 22nd international
conference on VLSI design, pp 327-332

Waksman A, Suozzo M, Sethumadhavan S (2013) Fanci: identifi-
cation of stealthy malicious logic using boolean functional analy-
sis. In Proceedings of the 2013 ACM SIGSAC conference on com-
puter & communications security, ser. CCS *13. ACM, New
York, pp 697-708. [Online]. Available: doi:10.1145/2508859.
2516654

Xiao K, Zhang X, Tehranipoor M (2013) A clock sweeping tech-
nique for detecting hardware trojans impacting circuits delay.
IEEE Design Test 30(2):26-34

Wang X, Salmani H, Tehranipoor M, Plusquellic J (2008) Hard-
ware trojan detection and isolation using current integration and
localized current analysis. In: 2008 IEEE international sympo-
sium on defect and fault tolerance of VLSI systems, pp 87—
95

Narasimhan S, Du D, Chakraborty RS, Paul S, Wolff F, Papachris-
tou C, Roy K, Bhunia S (2010) Multiple-parameter side-channel
analysis: a non-invasive hardware trojan detection approach. In:
2010 IEEE international symposium on hardware-oriented secu-
rity and trust (HOST), pp 13-18

Zhang X, Tehranipoor M (2011) Ron: an on-chip ring oscil-
lator network for hardware trojan detection. In: 2011 Design,
automation test in Europe, pp 1-6

Hu K, Nowroz AN, Reda S, Koushanfar F (2013) High-sensitivity
hardware trojan detection using multimodal characterization. In:
Design, automation test in europe conference exhibition (DATE),
2013, pp 1271-1276

Stellari F, Song P, Weger AJ, Culp J, Herbert A, Pfeiffer D (2014)
Verification of untrusted chips using trusted layout and emis-
sion measurements. In: 2014 IEEE international symposium on
hardware-oriented security and trust (HOST), pp 19-24

LiJ, Lach J (2008) At-speed delay characterization for ic authenti-
cation and trojan horse detection. In: IEEE international workshop
on hardware-oriented security and trust, 2008. HOST 2008, pp
8-14

Salmani H, Tehranipoor M (2013) Analyzing circuit vulnerability
to hardware trojan insertion at the behavioral level. In: 2013 IEEE
international symposium on defect and fault tolerance in vlsi and
nanotechnology systems (DFT), pp 190-195

Zhang X, Tehranipoor M (2011) Case study: detecting hardware
trojans in third-party digital ip cores. In: 2011 IEEE international
symposium on hardware-oriented security and trust (HOST), pp
67-70

Love E, Jin Y, Makris Y (2012) Proof-carrying hardware intel-
lectual property: A pathway to trusted module acquisition. IEEE
Transactions on Information Forensics and Security 7(1):25-40
Love E, Jin Y, Makris YG (2011) Enhancing security via provably
trustworthy hardware intellectual property. In: 2011 IEEE inter-
national symposium on hardware-oriented security and trust, pp
12-17

Guo X, Dutta RG, Jin Y, Farahmandi F, Mishra P (2015) Pre-
silicon security verification and validation: a formal perspective.
In: Proceedings of the 52Nd annual design automation con-
ference, ser. DAC 15, ACM, New York. [Online]. Available:
doi:10.1145/2744769.2747939

Rajendran J., Vedula V, Karri R (2015) Detecting malicious modi-
fications of data in third-party intellectual property cores. In: 2015
52nd ACM/EDAC/IEEE design automation conference (DAC), pp
1-6

Salmani H, Tehranipoor M, Plusquellic J (2012) A novel technique
for improving hardware trojan detection and reducing trojan acti-
vation time. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20(1):112-125

@ Springer

http://dl.acm.org/citation.cfm?id=266800.266832
http://dx.doi.org/10.1007/978-3-642-04138-9_28
http://doi.acm.org/10.1145/2508859.2516654
http://doi.acm.org/10.1145/2508859.2516654
http://doi.acm.org/10.1145/2744769.2747939

102

J Hardw Syst Secur (2017) 1:85-102

217.

28.

29.

30.

31.

32.

33.

Salmani H, Tehranipoor M (2012) Layout-aware switching activ-
ity localization to enhance hardware trojan detection. IEEE Trans-
actions on Information Forensics and Security 7(1):76-87

Forte D, Bao C, Srivastava A (2013) Temperature tracking: an
innovative run-time approach for hardware trojan detection. In:
Proceedings of the international conference on computer-aided
design, ser. ICCAD ’13. IEEE Press, Piscataway, pp 532-539.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2561828.
2561931

Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Logic encryp-
tion: A fault analysis perspective. In: Proceedings of the confer-
ence on design, automation and test in europe, ser. DATE *12.
EDA Consortium, San Jose, pp 953-958. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2492708.2492947

Chakraborty RS, Bhunia S (2009) Security against hardware
trojan through a novel application of design obfuscation. In: Pro-
ceedings of the 2009 international conference on computer-aided
design, ser. ICCAD ’09. ACM, New York, pp 113-116. [Online].
Available: doi:10.1145/1687399.1687424

Chakraborty R, Bhunia S (2009) Harpoon: an obfuscation-based
soc design methodology for hardware protection. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems 28(10):1493-1502

Xiao K, Tehranipoor M (2013) Bisa: built-in self-authentication
for preventing hardware trojan insertion. In: 2013 IEEE inter-
national symposium on hardware-oriented security and trust
(HOST), pp 45-50

Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analy-
sis of integrated circuit camouflaging. In: Proceedings of the 2013

@ Springer

34.

35.

36.

37.

38.

39.

ACM SIGSAC conference on computer & communications
security, ser. CCS ’13. ACM, New York, pp pp 709-720. [Online].
Available: doi:10.1145/2508859.2516656

Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing
computer hardware using 3d integrated circuit (ic) technology
and split manufacturing for obfuscation. In: Presented as part of
the 22nd USENIX security symposium (USENIX Security 13),
USENIX, Washington. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity 1 3/technical-sessions/presentation/
imeson

Vaidyanathan K, Das BP, Sumbul E, Liu R, Pileggi L (2014)
Building trusted ics using split fabrication. In: 2014 IEEE inter-
national symposium on hardware-oriented security and trust
(HOST), pp 1-6

Mal-Sarkar S, Krishna A, Ghosh A, Bhunia S (2014) Hard-
ware trojan attacks in fpga devices: threat analysis and effective
counter measures. In: Proceedings of the 24th edition of the great
lakes symposium on VLSI, ser. GLSVLSI ’14. ACM, New York,
pp 287-292. [Online]. Available: doi:10.1145/2591513.2591520
Salmani H, Tehranipoor MM (2016) Vulnerability analysis of a
circuit layout to hardware trojan insertion. IEEE Transactions on
Information Forensics and Security 11(6):1214-1225

Dupuis S, Di Natale G, Flottes M-L, Rouzeyre B (2013) On the
effectiveness of hardware trojan horse detection via side-channel
analysis, vol 22. [Online]. Available: doi:10.1080/19393555.2014.
891277

Hu W, Mao B, Oberg J, Kastner R (2016) Detecting hard-
ware trojans with gate-level information-flow tracking. Computer
49(8):44-52. [Online]. Available: doi:10.1109/MC.2016.225

http://dl.acm.org/citation.cfm?id=2561828.2561931
http://dl.acm.org/citation.cfm?id=2561828.2561931
http://dl.acm.org/citation.cfm?id=2492708.2492947
http://doi.acm.org/10.1145/1687399.1687424
http://doi.acm.org/10.1145/2508859.2516656
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imeson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imeson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imeson
http://doi.acm.org/10.1145/2591513.2591520
http://dx.doi.org/10.1080/19393555.2014.891277
http://dx.doi.org/10.1080/19393555.2014.891277
http://dx.doi.org/10.1109/MC.2016.225

	Benchmarking of Hardware Trojans and Maliciously Affected Circuits
	Abstract
	Introduction*.4pt
	Background
	Hardware Trojans
	Adversarial/Attack Models
	Detection Techniques*.3pt
	Hardware Trojans in FPGA Designs
	Activation Characteristic*.3pt
	Payload Characteristics

	Trojan Benchmarks
	Trojan Benchmark Taxonomy
	Insertion Phase
	Abstraction Level
	Activation Mechanism
	Effect
	Location
	Physical Characteristic

	Sample Trojan Benchmarks

	Trust Benchmarks
	Benchmark Naming Convention*.4pt
	Sample Trust Benchmarks*.4pt

	Design Vulnerability Analysis
	Vulnerability Analysis at the RTL Level
	Vulnerability Analysis at the Netlist Level
	Creating the Trojans

	Vulnerability Analysis at the Layout Level

	Trust Benchmark Evaluation
	Trojan Evaluation Suite
	Trojan Detectability
	Vulnerability and Detectability*.4pt
	Benchmarks and Attack Models
	EthernetMAC10GE-T200

	Future Work
	Conclusion
	Acknowledgments
	References

