JTAG Security and Trust

M. Tehranipoor

Introduction to Hardware Security & Trust University of Florida

Agenda

Introduction to JTAG

High-Level JTAG Exploits

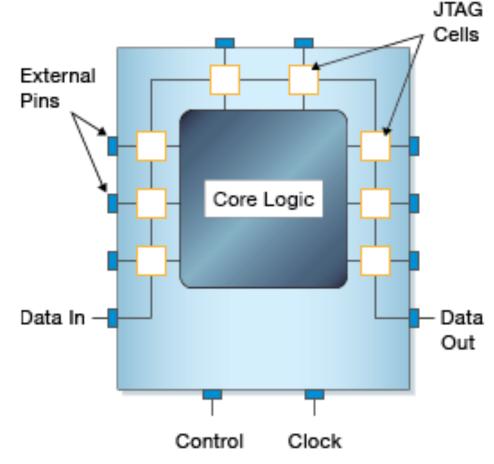
Popular JTAG Exploits

Security Options

JTAG Introduction

 'JTAG'' refers to IEEE Std. 1149.1, Standard Test Access Port and Boundary Scan Architecture

 IEEE Std. 1532, Boundary-Scan-Based In-System Configuration of Programmable Devices

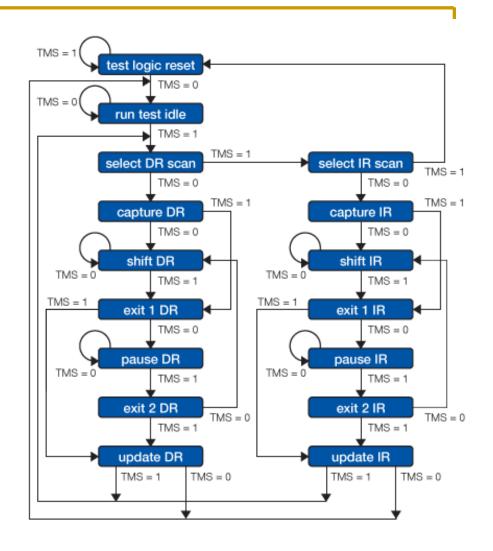

Goals/Benefits of JTAG

Low Cost

 Inter-circuit testing without need of physical test-probes

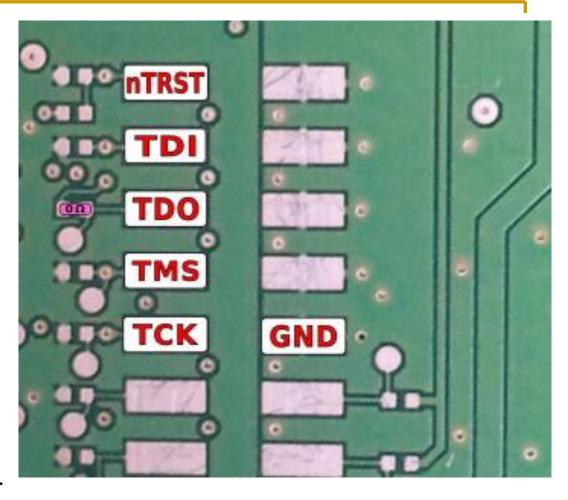
 Increased fault detection Data In coverage

Lower test time


Physical Components

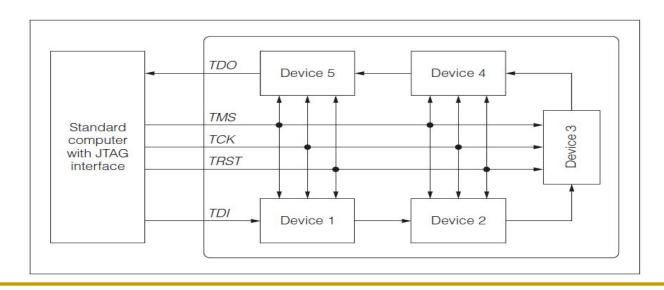
TAP

- Test Access Port
- Interprets JTAG protocol
- Controlled by TMS signal


BSR

- Boundary Scan Registers
- Between module and TAP

JTAG Control


- TDO
 - Test Data Output
- TDI
 - Test Data Input
- TMS
 - Test Mode Select
- TCK
 - Test Clock
- TRST
 - Resets TAP Controller

JTAG Modes

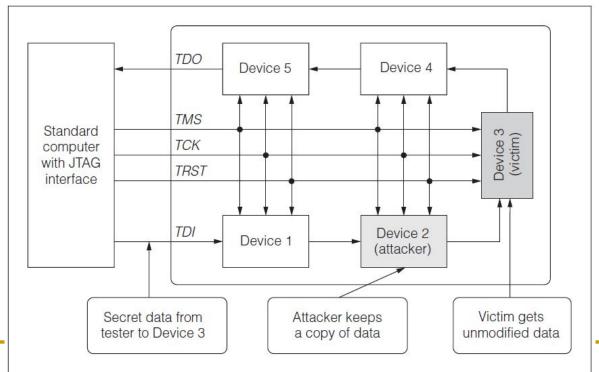
- Bypass
 - Connects TDI to TDO
 - One cycle delay
- ExTest
 - Asserts data on output pins

- Reads data from input pins
- InTest
 - Asserts data on input pins
 - Reads data from output pins

JTAG Overview

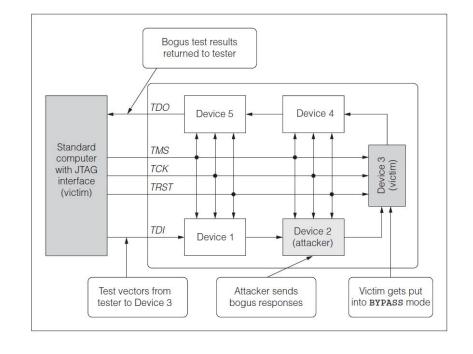
- JTAG Benefits
 - Low Cost
 - Ease of testing
- Physical Components
 - □ TAP, BSR
- JTAG Pins
 - □ TDI, TDO, TMS, TCK, TRST
- JTAG Modes
 - Bypass, ExTest, InTest

High-Level JTAG Exploits


Sniff TDI/TDO signals

Modify TDI/TDO signals

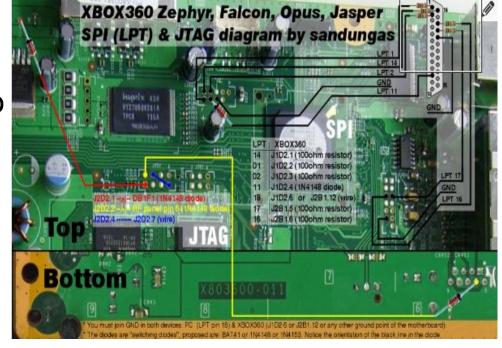
Control TMS and TCK signals


Sniff TDI/TDO Signals

- Used to intercept secrets being sent to or from a chip
- Preceding or chip after victim chip behaves differently during bypass to intercept message

Modify TDI/TDO Signals

- Can modify Test Vectors and Test Responses
- Can be used to fake correct or false tests
- Attacker can either be upstream or downstream of victim based on attack



Control TMS and TCK Signals

- For many exploits, TMS and TCK signals need to be controlled
- Attacker needs to be able to overpower The signal sent by TAP
- Attacking device needs to be able to force TMS and TCK above or below logic threshold voltage
- Can be done by combining lines to make a more powerful driver or using multiple attackers to overcome TMS and TCK signals

Xbox 360 Exploit

- Used to override Microsoft security features
- Allows homebrew code to be run, installation of HD, game modification, ripping of games
- JTAG is used to extract secret keys needed to perform exploits and to change programming

Security Options

Buffers in the JTAG Chain

 JTAG system connected in "Star" pattern instead of being chained(Separate TMS and TCK)

- Encryption/Authentication for JTAG use
 - Most of the research in JTAG security would be classified under this
 - Although it would provide much better protection, like all security hardware, increases cost and space.

Challenge, Response

- Requires PUF or randomly burned fuses
- Requires Set_Challenge and Get_Response instructions in JTAG implementation
- A Challenge input is given to the JTAG module, and the module will hash this with the value of it's fuses to create the response
- Only a known, trusted module will give a correct response
- So, can be determined if modules are trusted or not

Public/Private Key Authentication

- Tester/Updater is required to have a certificate of authentication signed by a designated third party.
- Authenticators public key is known to JTAG system
- Using the known public key, the JTAG system can decrypt the certificate and determine whether the tester/updater is trusted
- Trusted testers/updaters are allowed access to JTAG system, un-trusted are blocked

User Permissions

- A user permission level, i, allows them access to instructions with a level less than i
- Requires extra hardware to authenticate user and set permission level, and to save settings for what each permission level can and cannot do
- Ex. In memory, a permission level is saved for each module in the JTAG system. When that module is trying to be accessed, the saved level is compared to the current permission level

Removal/Destruction of JTAG

- To completely defend against JTAG attacks, one thought is to remove the JTAG hardware all together
 - Does not leave a way to in-field test
 - Can use BIST for testing
- Similarly to removal of JTAG, some companies use security fuses to disable JTAG before the hardware leaves the factory
 - Can implement different levels of disabled JTAG use

Acknowledgments

- Kumar, P. A., Kumar, P. S., & Patwa, A. (2012). Jtag architecture with multi level security. Manuscript submitted for publication, Department of Electronics and Communication, Amrita School of Engineering, Bangalore, India.
- Pierce, L., & Tragoudas, S. (2011). *Multi-level secure jtag architecture*. Manuscript submitted for publication, Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, .
- Rosenfeld, K., & Karri, R. (2010). Attacks and defenses for jtag. Manuscript submitted for publication, Polytechnic Institute of New York University, New York, NY,.
- The IEEE Std 1149.1-1990 Test Access Port and JTAG Architecture, and the Std 1149.1-1994b East 47th Street, New York, NY.
- Corelis (An EWA Company), (n.d.). Boundary-scan for pcb interconnect testing and in-system programming of cplds and flash memories.
 Retrieved from website: http://www.corelis.com/whitepapers/Boundary-Scan Whitepaper.pdf
- Rosenfeld, K., & Karri, R. (2012). Chapter 17: Security and testing. In M. Tehranipoor & C. Wang (Eds.), Introduction to Hardware Security and Trust doi:www.springer.com
- How to jtag your xbox 360 and run homebrew. (n.d.). Retrieved from http://www.instructables.com/id/How-to-JTAG-your-Xbox-360-and-run-homebrew/