Trusted Design in FPGAs

Mark Tehranipoor

Introduction to Hardware Security & Trust University of Florida

Outline

- Intro to FPGA Architecture
- FPGA Overview
- Manufacturing Flow
- FPGA Security
 - Attacks
 - Defenses
 - Current Research
- Conclusion

FPGA Architectures

Field Programmable Gate Array

- Configurability
 - Configurable logic block (CLB)
- Reconfigurable interconnects

□ I/O

Similar to ASIC

HDL

CLB

CLB Wiring

Board Level

Why FPGAs?

- Time to Market
- Cost Reduction
- Reliability
- Programmability
- High performance designs
 - Speed
 - Power consumption
 - Package size

Common FPGA Applications

- High Performance Computing
- Medical Equipment
- Data Servers
- Consumer Electronics
- Computer Networking
- Aerospace and Defense
- Etc.

Traditional Manufacturing Flow

FPGA Manufacturing Flow

FPGA Manufacturing Flow

Production Flow

System Designer

Programming

Software

Attacks

- Cloning, Overproducing, Mislabeling
- Reverse Engineering the Bitstream
- Readback
- Side Channels
 - Power Analysis
 - EM Analysis
 - Timing Analysis
 - Ionizing Radiation
- Invasive and Semi-Invasive
- Brute Force, Crippling, Fault Injection
- Relay and Replay

Cloning, Overproducing, Mislabeling

FPGA's are generic

- A generated bitstream will work on any device within the respective device family and size
- Attackers can clone bitstreams
 - Recording in transmission to FPGA
 - Use them in other systems
 - Cheaper clones

Reverse Engineering the Bitstream

 Bitstream Reversal: transformation of an encoded bitstream into functionally equivalent description of the original design

Bitstream Reversal

Partial reversal

- Extraction of data from bitstream without full functionality
 - BRAM/LUT
 - Memory cell states
 - Keys could be compromised

Full reversal would divulge the entire design

Readback

- Readback: Process of reading back data from the FPGA device to verify that the design was downloaded properly.
- Retrieving a snapshot of the FPGA's current state while still in operation
 - Configuration
 - LUT
 - Memory contents
- Useful for vendors to verify correct operation
- If enabled, an attacker can add missing header/footer info
 - Use in another device
 - Reprogram FPGA with modified version, Tamper with a Trojan
 - Reverse engineering
 - "Readback Difference Attack"

Readback

Defensive usage

- Providing evidence of tampering
 - Ionizing radiation attack
- Xilinx provides a bitstream bit to disable readback, but is easily found
- Altera's devices do not provide readback capabilities

Side Channel

- Challenge: isolate internal operations of IC from the environment
 - Power Analysis
 - EM Analysis
 - Timing Analysis
 - Ionizing Radiation

Power Analysis

SPA on Xilinx Virtex FPGA

Not practical for most paralleled cryptographic operations

DPA possible

Statistical correlation techniques against AES and DES

Power analysis attacks could be made harder Equivalent power signatures

Electromagnetic Field Analysis

- Movement of charge
- Used to efficiently inject signal/noise in attacks
- Successful side channel attack to be exploited

Timing Analysis

- Timing attacks are difficult on FPGA
- Off chip for functionality
- Observable via device pins

Ionizing Radiation

Single event upsets (SEU, Soft Errors)

- Radiation induced errors caused when charged particles lose energy by ionizing the medium through which they pass
- May cause transient pulse resulting in delay faults
- Cause memory bit to change state
- Exhaustively irradiating device until desired results are obtained
- Given the number of transistors & devices, this may not be practical

Ionizing Radiation Detection

- FPGA vendors introduced measures to ensure highreliability
 - CRC or Hamming
- Triple Modular Redundancy
- Chip "scrubbing" to remove block faults from SEU

Flip Chip Packaging

Side Channel: Conclusion

- Some challenges an attacker faces with most side channel attacks:
 - Familiarity with implementation details
 - Isolation of target function
 - Obtaining high signal to noise ratio
 - Probing BGA packages
 - Devices manufactured at 90/65/45nm technologies

Crippling & Fault Injection

- Subvert a system to perform malicious functions or take it off-line
- Reprogramming with or without encryption can take the system down
 - Authentication can solve this issue
- Attempt to force the device to execute an incorrect operation, or be left in a compromising state
 - Altering input clock or voltage

Relay Attack

- Loaded bitstream uses an authentication protocol to communicate to a chip nearby in which case they share a key. This is meant to prevent the bitstream from being used on another system.
- **Relay attacks** allow an adversary to impersonate a participant during an authentication protocol

Replay

- Attacker resends recorded protocol transaction data
 - ex. impersonation of a participant in authentication protocol
- Cloning of bitstreams is the simplest form

Replay

Replay

Defenses

Bitstream Encryption

- Key Storage
- Key Management

Theft Deterrents

- PUFs
- DRM

Bitstream Encryption

- Encrypt bitstream at end of design flow
- Decrypt it on the FPGA
 - Cloning
 - Reverse Engineering
 - Tampering
- Bitstream produced
 - Software requests key
 - Encryption
- User 'programs' same key into FPGA
- Bitstream is downloaded, directed through decryption circuitry

Key Storage

- Keys must be present inside the device to decrypt
- Two storage devices
 - Volatile
 - SRAM
 - Non-volatile
 - Fuses
 - Flash
 - EEPROM
 - PUF

Key Management

Encryption

- Xilinx: Triple DES, AES 256
- Altera:
 - Stratus II : AES 128
 - Stratus III: volatile & non volatile, AES 256
- If encryption is used:
 - Disable readback & partial configuration

Key Management

Establishing Value

- Simple: One key
 - Catastrophe if compromised
- More secure: One key per device
 - Very costly
 - If compromised, single stream is affected
 - Database of keys is threat

Design Theft Deterrents

- Vendors offer a few cloning deterrents that rely on secrecy of bitstream encoding
 - Xilinx Spartan 3A "Device DNA"
 - Challenge-response schemes

Watermarking and Fingerprinting

- Passive
- Proves ownership
- Fingerprinting is a watermark used to identify specific end users
- Can be inserted:
 - HDL
 - Netlist
 - Bitstream
- Do not prevent theft, but can provide proof in court of fraud

Ongoing Research

- Physically Unclonable Functions
- Bitstream Authentication
- FPGA Digital Rights Management

PUFs

- One-way functions
- Unique identities from physical properties
- PUFs cannot be reversed
- Very active research area
- Arbiter PUF
 - Uses delay variations within paths

PUFs

Ring Oscillator

Manufacturing creates different oscillation frequencies

Initial State of SRAM

- Upon power on, an SRAM cell is more prone to settle at 0, or 1
 - Butterfly PUF

Bitstream Authentication

- Allows two major items:
 - Sender verification
 - Message integrity
- Sometimes considered more important than encryption
- Very complex methods have been devised
- Restrictions for bitstreams and cores from being used in unauthorized devices

Pay-per-use

VHDL '08 Protect

`protect begin_protected

protect directives and encoded encrypted information protect end_protected

Example:

Conclusion

- Security is ongoing. What is secure today, may be trivial to circumvent tomorrow.
- FPGA security (hardware in general) is a relatively new research area which is advancing rapidly

References

- Steve Trimberger, Trusted design in FPGAs, Proceedings of the 44th annual Design Automation Conference, June 04-08, 2007, San Diego, California
- A. Lesea. IP Security in FPGAs, White Paper WP 261. Technical report, XILINX, February 2007.
- M. Tehranipoor and C. Wang. Introduction to Hardware Security. Springer, pp. 195-229, 2012.