
1

Introduction to Cryptography

Mark Tehranipoor

Introduction to Hardware Security & Trust
University of Florida

2

Summary

n Substitution ciphers
n Permutations
n Making good ciphers
n Data Encryption Standard (DES)
n Advanced Encryption Standard (AES)

Slides are courtesy of Leszek T. Lilien from WMich
http://www.cs.wmich.edu/~llilien/

Cryptographic algorithms protects critical infrastructure
and assets!

Cryptography will play an increasingly
Important Role …

• Crypto principles see growing usage in information protection
• A locking approach

4

Terminology and Background
Threats to Messages

n Interception
n Interruption

n Blocking msgs

n Modification
n Fabrication

“A threat is blocked by control of a
vulnerability”

[Pfleeger & Pfleeger]

[cf. B. Endicott-Popovsky, U. Washington]

5

Basic Terminology & Notation

n Cryptology:
q cryptography + cryptanalysis

n Cryptography:
q art/science of keeping message secure

n Cryptanalysis:
q art/science of breaking ciphertext

n Enigma in world war II
q Read the real story – not fabrications!

6

Basic Cryptographic Scheme

plaintext ciphertext
original
plaintext

ENCRYPTION
ENCODING

ENCIPHERING
E

DECRYPTION
DECODING

DECIPHERING
D

P C P

• P = <p1, p2, ..., pn> pi = i-th char of P
– P = “DO NOT TELL ANYBODY” p1 =”D”, p2 = ”O”, etc.
– By convention, cleartext in uppercase

• C = <c1, c2, ..., cn> ci = i-th char of C
– C = “ep opu ufmm bozcpez” c1 =”e”, c2 =”p”, etc.
– By convention, ciphertext in lowercase

7

Benefits of Cryptography

n Improvement not a Solution!
q Minimizes problems
q Doesn’t solve them

q Remember: There is no solution!

q Adds an envelope (encoding) to an open postcard
(plaintext or cleartext)

[cf. D. Frincke, U. of Idaho]

8

Formal Notation

• C = E(P) E – encryption rule/algorithm
• P = D(C) D – decryption rule/algorithm

• We need a cryptosystem, where:
– P = D(C)= D(E(P))

• i.e., able to get the original message back

plaintext ciphertext
original
plaintext

ENCRYPTION
ENCODING

ENCIPHERING
E

DECRYPTION
DECODING

DECIPHERING
D

P C P

9

Cryptography in Practice

plaintext
P

ciphertext
ENCRYPTION
ENCODING

ENCIPHERING
E

C
hostile

environment

ciphertext
original
plaintext

DECRYPTION
DECODING

DECIPHERING
D

C P
hostile

environment

• Sending a secure message

• Receiving a secure message

Error
Interception
Interruption

10

Crypto System with Keys

• C = E(KE, P)
– E = set of encryption algorithms / KE selects Ei Î E

• P = D(KD, C)
– D = set of decryption algorithms / KD selects Dj Î D

• Crypto algorithms and keys are like door locks and keys

• We need: P = D(KD, E(KE, P))

E D
P C P

Encryption
Key

Decryption
Key

KE KD

11

Classification of Cryptosystems w.r.t. Keys

n Keyless cryptosystems exist (e.g., Caesar’s cipher)

q Less secure

n Symmetric cryptosystems: KE = KD
q Classic
q Encipher and decipher using the same key

n Or one key is easily derived from other

n Asymmetric cryptosystems: KE ≠ KD
q Public key system
q Encipher and decipher using different keys

n Computationally infeasible to derive one from other

[cf. B. Endicott-Popovsky, U. Washington]

12

Cryptanalysis (1)

n Cryptanalysts goals:
q Break a single msg
q Recognize patterns in encrypted msgs, to be able to

break the subsequent ones
q Infer meaning w/o breaking encryption

n Unusual volume of msgs between enemy troops may indicate a
coming attack

n Busiest node may be enemy headquarters

q Deduce the key, to facilitate breaking subsequent msgs
q Find vulnerabilities in implementation or environment of

an encryption algorithm
q Find a general weakness in an encryption algorithm

13

Cryptanalysis (2)

n Information for cryptanalysts:
q Intercepted encrypted msgs
q Known encryption algorithms
q Intercepted plaintext
q Data known or suspected to be ciphertext
q Math or statistical tools and techniques
q Properties of natural languages

n Esp. adversary’s natural language
q To confuse the enemy, Americans used Navajo language in WW2

q Propertiers of computer systems

n Role of ingenuity / luck
n There are no rules!!!

14

Breakable Encryption (1)

n Breakable encryption
q Theoretically, it is possible to devise unbreakable

cryptosystems
q Practical cryptosystems almost always are

breakable, given adequate time and computing
power

q The trick is to make breaking a cryptosystem hard
enough for the intruder

[cf. J. Leiwo, VU, NL]

15

Breakable Encryption (2)

n Example: Breakability of an encryption algorithm
Msg with just 25 characters
§ 2625 possible decryptions ~ 1035 decryptions
§ Only one is the right one
§ Brute force approach to find the right one:

§ At 1010 (10 bln) decryption/sec => 1035 / 1010 = 1016 sec = 10 bln
yrs !

§ Infeasible with current technology

n Be smarter – use ingenuity
q Could reduce 2625 to, say, 1015 decryptions to check

At 1010 decr./sec => 1015 / 1010 = 105 sec = ~ 1 day

16

Requirements for Crypto Protocols

q Messages should get to destination
q Only the recipient should get it
q Only the recipient should see it
q Proof of the sender’s identity
q Message shouldn’t be corrupted in transit
q Message should be sent/received once

q Proofs that message was sent/received (non-
repudiation)

[cf. D. Frincke, U. of Idaho]

17

Representing Characters

• Letters (uppercase only) represented by numbers 0-25
(modulo 26).
A B C D ... X Y Z

0 1 2 3 ... 23 24 25

• Operations on letters:
A + 2 = C
X + 4 = B (circular!)
...

18

Basic Types of Ciphers

• Substitution ciphers
– Letters of P replaced with other letters by E

• Transposition (permutation) ciphers
– Order of letters in P rearranged by E

• Product ciphers
– E “=” E1 “+” E2 “+” ... “+” En

• Combine two or more ciphers to enhance the security
of the cryptosystem

19

Substitution Ciphers

• Substitution Ciphers:
– Letters of P replaced with other letters

by E

20

The Caesar Cipher (1)

§ ci=E(pi)=pi+3 mod 26 (26 letters in the English alphabet)
Change each letter to the third letter following it
(circularly)
A à D, B à E, ... X à A, Y à B, Z à C

§ Can represent as a permutation p: p(i) = i+3 mod 26
p(0)=3, p(1)=4, ...,

p(23)=26 mod 26=0, p(24)=1, p(25)=2

§ Key = 3, or key = ‘D’ (because D represents 3)

21

The Caesar Cipher (2)

§ Example [cf. B. Endicott-Popovsky]

§ P (plaintext): HELLO WORLD
§ C (ciphertext): khoor zruog

§ Caesar Cipher is a monoalphabetic substitution
cipher (= simple substitution cipher)

One key is used
One letter substitutes the letter in P

22

Attacking a Substitution Cipher

§ Exhaustive search
§ If the key space is small enough, try all possible keys

until you find the right one
§ Cæsar cipher has 26 possible keys

from A to Z OR: from 0 to 25

§ Statistical analysis (attack)
§ Compare to so called 1-gram (unigram) model of

English
§ It shows frequency of (single) characters in English
§ The longer the C, the more effective statistical analysis

would be
[cf. Barbara Endicott-Popovsky, U. Washington]

23

1-grams (Unigrams) for English

a 0.080 h 0.060 n 0.070 t 0.090

b 0.015 i 0.065 o 0.080 u 0.030
c 0.030 j 0.005 p 0.020 v 0.010
d 0.040 k 0.005 q 0.002 w 0.015
e 0.130 l 0.035 r 0.065 x 0.005
f 0.020 m 0.030 s 0.060 y 0.020
g 0.015 z 0.002

[cf. Barbara Endicott-Popovsky, U. Washington]

24

Statistical Attack – Step 1

§ Compute frequency f(c) of each letter c in
ciphertext

§ Example: c = ‘khoor zruog’
§ 10 characters: 3 * ‘o’, 2 * ‘r’, 1 * {k, h, z, u, g}
§ f(c):

f(g)=0.1 f(h)=0.1 f(k)=0.1 f(o)=0.3 f(r)= 0.2
f(u)=0.1 f(z)=0.1 f(ci) = 0 for any other ci

§ Apply 1-gram model of English
§ Frequency of (single) characters in English
§ 1-grams on previous slide

[cf. Barbara Endicott-Popovsky, U. Washington]

25

Statistical Analysis – Step 2
§ phi j(i) - correlation of frequency of letters in ciphertext with

frequency of corresponding letters in English —for key i
§ For key i: j(i) = S0 ≤ c ≤ 25 f(c) * p(c – i)

§ c representation of character (a-0, ..., z-25)
§ f(c) is frequency of letter c in ciphertext C
§ p(x) is frequency of character x in English
§ Intuition: sum of probabilities for words in P, if i were the key

§ Example: C = ‘khoor zruog’ (P = ‘HELLO WORLD’)
f(c): f(g)=0.1, f(h)=0.1, f(k)=0.1, f(o)=0.3, f(r)=0.2, f(u)=0.1, f(z)=0.1
c: g - 6, h - 7, k - 10, o - 14, r - 17, u - 20, z - 25
j(i) = 0.1p(6 – i) + 0.1p(7 – i) + 0.1p(10 – i) +

+ 0.3p(14 – i) + 0.2p(17 – i) + 0.1p(20 – i) +
+ 0.1p(25 – i)

[cf. Barbara Endicott-Popovsky, U. Washington]

c is a letter in ciphertext thus c-i is
the letter in plaintext.

26

Statistical Attack – Step 2a (Calculations)

i j(i) i j(i) i j(i) i j(i)
0 0.0482 7 0.0442 13 0.0520 19 0.0315
1 0.0364 8 0.0202 14 0.0535 20 0.0302
2 0.0410 9 0.0267 15 0.0226 21 0.0517
3 0.0575 10 0.0635 16 0.0322 22 0.0380
4 0.0252 11 0.0262 17 0.0392 23 0.0370
5 0.0190 12 0.0325 18 0.0299 24 0.0316
6 0.0660 25 0.0430

[cf. Barbara Endicott-Popovsky, U. Washington]

§ Correlation j(i) for 0≤ i ≤25

27

Statistical Attack – Step 3 (The Result)

¨ Most probable keys (largest j(i) values):
– i = 6, j(i) = 0.0660

• plaintext EBIIL TLOLA
– i = 10, j(i) = 0.0635

• plaintext AXEEH PHKEW
– i = 3, j(i) = 0.0575

• plaintext HELLO WORLD
– i = 14, j(i) = 0.0535

• plaintext WTAAD LDGAS

¨ Only English phrase is for i = 3
– That’s the key (3 or ‘D’) – code broken

[cf. Barbara Endicott-Popovsky, U. Washington]

28

Caesar’s Problem

§ Conclusion: Key is too short
§ 1-char key – monoalphabetic substitution

§ Can be found by exhaustive search
§ Statistical frequencies not concealed well by short key

§ They look too much like ‘regular’ English letters

§ Solution: Make the key longer
§ n-char key (n ³ 2) – polyalphabetic substitution

§ Makes exhaustive search much more difficult
§ Statistical frequencies concealed much better

§ Makes cryptanalysis harder

[cf. Barbara Endicott-Popovsky, U. Washington]

29

Other Substitution Ciphers

n-char key:

• Polyalphabetic substitution ciphers

• Vigenere Tableaux cipher

30

Polyalphabetic Substitution - Examples

• Flatten (difuse) somewhat the frequency
distribution of letters by combining high and low
distributions

• Example – 2-key substitution:
A B C D E F G H I J K L M

Key1: a d g j m p s v y b e h k
Key2: n s x c h m r w b g l q v

N O P Q R S T U V W X Y Z
Key1: n q t w z c f i l o r u x
Key2: a f k p u z e j o t y d i

[cf. J. Leiwo, VU, NL]
n Question:

How Key1 and Key2 were defined?

31

• ...
• Example:

A B C D E F G H I J K L M
Key1: a d g j m p s v y b e h k
Key2: n s x c h m r w b g l q v

N O P Q R S T U V W X Y Z
Key1: n q t w z c f i l o r u x
Key2: a f k p u z e j o t y d i

[cf. J. Leiwo, VU, NL]

n Answer:
Key1 – start with ‘a’, skip 2, take next,

skip 2, take next letter, ... (circular)
Key2 - start with ‘n’ (2nd half of alphabet), skip 4,

take next, skip 4, take next, ... (circular)

Polyalphabetic Substitution - Examples

32

– Example:
A B C D E F G H I J K L M

Key1: a d g j m p s v y b e h k
Key2: n s x c h m r w b g l q v

N O P Q R S T U V W X Y Z
Key1: n q t w z c f i l o r u x
Key2: a f k p u z e j o t y d i

– Plaintext: TOUGH STUFF
– Ciphertext: ffirv zfjpm

use n (=2) keys in turn for consecutive P chars in P
• Note:

– Different chars mapped into the same one: T, O à f
– Same char mapped into different ones: F à p, m
– ‘f’ most frequent in C (0.30); in English: f(f) = 0.02 << f(e) = 0.13

[cf. J. Leiwo, VU, NL]

Polyalphabetic Substitution - Examples

33

Vigenere Tableaux (1)

• P
[cf. J. Leiwo, VU, NL]

Note: Row A – shift 0 (a->a)
Row B – shift 1 (a->b)
Row C – shift 2 (a->c)
...
Row Z – shift 25 (a->z)

34

Vigenère Tableaux (2)

• Example
Key:
EXODUS

Plaintext P:
YELLOW SUBMARINE FROM YELLOW RIVER

Extended keyword (re-applied to mimic words in P):
YELLOW SUBMARINE FROM YELLOW RIVER
EXODUS EXODUSEXO DUSE XODUSE XODUS

Ciphertext:
cbxoio wlppujmks ilgq vsofhb owyyj

[cf. J. Leiwo, VU, NL]

35

Vigenère Tableaux (3)
• Example

...
Extended keyword (re-applied to mimic words in P):
YELLOW SUBMARINE FROM YELLOW RIVER
EXODUS EXODUSEXO DUSE XODUSE XODUS

Ciphertext:
cbzoio wlppujmks ilgq vsofhb owyyj

§ Answer:
c from P indexes row
c from extended key indexes column

e.g.: row Y and column e à ‘c’
row E and column x à ‘b’
row L and column o à ‘z’
...

[cf. J. Leiwo, VU, NL]

36

Transposition Ciphers (1)

§ Rearrange letters in plaintext to produce ciphertext
§ Example 1a and 1b: Columnar transposition

§ Plaintext: HELLO WORLD
§ Transposition onto: (a) 3 columns:

HEL
LOW
ORL
DXX XX - padding

§ Ciphertext (read column-by column):
(a) hlodeorxlwlx (b) hloolelwrd

§ What is the key?
§ Number of columns: (a) key = 3 and (b) key = 2

(b) onto 2 columns:
HE
LL
OW
OR
LD

37

Transposition Ciphers (2)

§ Example 2: Rail-Fence Cipher
§ Plaintext: HELLO WORLD
§ Transposition into 2 rows (rails) column-by-column:

HLOOL
ELWRD

§ Ciphertext: hloolelwrd (Does it look familiar?)

§ What is the key?
§ Number of rails key = 2

[cf. Barbara Endicott-Popovsky, U. Washington]

38

Product Ciphers
• A.k.a. combination ciphers

• Built of multiple blocks, each is:
– Substitution

or:
– Transposition

• Example: two-block product cipher
– E2(E1(P, KE1), KE2)

• Product cipher might not necessarily be stronger
than its individual components used separately!
– Might not be even as strong as individual components

39

Criteria for “Good” Ciphers

• “Good” depends on intended application
– Substitution

• C hides chars of P
• If > 1 key, C dissipates high frequency chars

– Transposition
• C scrambles text => hides n-grams for n > 1

– Product ciphers
• Can do all of the above

– What is more important for your app?
What facilities available to sender/receiver?

• E.g., no supercomputer support on the battlefield

40

Criteria for “Good” Ciphers

• Commercial Principles of Sound Encryption Systems
1. Sound mathematics

§ Proven vs. not broken so far
2. Verified by expert analysis

§ Including outside experts
3. Stood the test of time

§ Long-term success is not a guarantee
§ Still. Flows in many E’s discovered soon after their release

• Examples of popular commercial encryption:
– DES / RSA / AES

[cf. A. Striegel]

DES = Data Encryption Standard
RSA = Rivest-Shamir-Adelman
AES = Advanced Encryption Standard (rel. new)

41

Stream and Block Ciphers (1)

a. Stream ciphers

b. Problems with stream ciphers

c. Block ciphers

d. Pros / cons for stream and block ciphers

42

Stream Ciphers (1)
• Stream cipher: 1 char from P à 1 char for C

– Example: polyalphabetic cipher
§ P and K (repeated ‘EXODUS’):
YELLOWSUBMARINEFROMYELLOWRIVER
EXODUSEXODUSEXODUSEXODUSEXODUS

§ Encryption (char after char, using Vigenère Tableaux):
(1) E(Y, E) à c (2) E(E, X) à b (3) E(L, O) à z ...

§ C: cbzoiowlppujmksilgqvsofhbowyyj
§ C as sent (in the right-to-left order):

Sender
S

Receiver
R

jyywobhfosvqgliskmjupplwoiozbc

43

Stream Ciphers (2)
– Example: polyalphabetic cipher - cont.

§ C as received (in the right-to-left order):

§ C and K for decryption:
cbzoiowlppujmksilgqvsofhbowyyj
EXODUSEXODUSEXODUSEXODUSEXODUS

§ Decryption:
(1) D(c, E) à Y (2) D(b, X) à E (3)D(z, O) à L ...

§ Decrypted P:
YEL...

Q: Do you know how D uses Vigenère Tableaux?
A: Finds c under column e è Y

Sender
S

Receiver
R

jyywobhfosvqgliskmjupplwoiozbc

44

Problems with Stream Ciphers (1)

• Problems with stream ciphers
– Dropping a char from key K results in wrong decryption
– Example:

§ P and K (repeated ‘EXODUS’) with a char in K missing:
YELLOWSUBMARINEFROMYELLOWRIVER
EODUSEXODUSEXODUSEXODUSEXODUSE

§ Encryption
(using VT):

1) E(Y,E) à c
2) E(E,O) à s
3) E(L,D) à o
...

§ Ciphertext: cso...
C in the order as sent (right-to-left):

...osc

missing X in K ! (no errors in repeated K later)

45

§ C and correct K (‘EXODUS’) for decryption:
cso...
EXO...

• Decryption (using VT, applying correct key):
1) D(c, E) à Y
2) D(s, X) à V
3) D(o, O) à A

...
• Decrypted P:
YVA... - Wrong!
– We know it’s wrong, Receiver might not know it yet!

§ C as received (in the right-to-left order):
...osc

Problems with Stream Ciphers (2)

What if message is
corrupted in a noisy

area?

46

Problems with Stream Ciphers (3)
• The problem might be recoverable

– Example:
If R had more characters decoded, R might be able to
detect that S dropped a key char, and R could recover
• E.g., suppose that R decoded:

YELLOW SUBMAZGTR
§ R could guess, that the 2nd word should really be:

SUBMARINE

§ => R would know that S dropped a char from K after
sending “SUBMA”

§ => R could go back 4 chars, drop a char from K
(“recalibrate K with C”), and get “resynchronized” with S

47

Block Ciphers (1)

• We can do better than using recovery for stream
ciphers
– Solution: use block ciphers

• Block cipher:
1 block of chars from P à 1 block of chars for C
– Example of block cipher: columnar transposition
– Block size = “o(message length)” (informally)

48

Block Ciphers (2)

• Why block size = “o(message length)” ?
– Because R must wait for “almost” the entire C before R can

decode some characters near beginning of P
– E.g., for P = ‘HELLO WORLD’, block size is “o(10)”
– Suppose that Key = 3 (3 columns):

– C as sent (in the right-to-left order):

HEL
LOW
ORL
DXX

xlwlxroedolh
Sender

S
Receiver

R

49

Block Ciphers (3)
– C as received (in the right-to-left order):
– R knows: K = 3, block size = 12 (=> 4 rows)

=> R knows that characters wil be sent in the order:
1st-4th-7th-10th--2nd-5th-8th-11th--3rd-6th-9th-12th

– R must wait for at least:
• 1 char of C to decode 1st char of P (‘h’)
• 5 chars of C to decode 2nd char of P (‘he’)
• 9 chars of C to decode 3rd, 4th, and 5th chars of P (‘hello’)
• 10 chars of C to decode 6th, 7th, and 8th chars of P (‘hello wor’)
• etc.

xlwlxroedolh
123
456
789
abc

a=10
b=11
c=12

50

Block Ciphers (4)
– Informally, we might call ciphers like the above example columnar

transposition cipher “weak-block” ciphers
• R can get some (even most) but not all chars of P before entire C is

received
– R can get one char of P immediately

» the 1st-after 1 of C (delay of 1 - 1 = 0)
– R can get some chars of P with “small” delay

» e.g., 2nd-after 5 of C (delay of 5 - 2 = 3)
– R can get some chars of P with “large” delay

» e.g., 3rd-after 9 of C (delay of 9 – 3 = 6)

– There are block ciphers when R cannot even start decoding C before
receiving the entire C

• Informally, we might call them “strong-block” ciphers

51

Pros / Cons for
Stream and Block Ciphers (1)

• Pros / cons for stream ciphers
– + Low delay for decoding individual symbols

– Can decode as soon as received
– + Low error propagation

– Error in E(c1) does not affect E(c2)

– - Low diffusion
– Each char separately encoded => carries over its frequency

info
– - Susceptibility to malicious insertion / modification

– Adversary can fabricate a new msg from pieces of broken
msgs, even if he doesn’t know E (just broke a few msgs)

52

• Pros / cons for block ciphers
– + High diffusion

• Frequency of a char from P diffused over (a few chars of) a block
of C

– + Immune to insertion
• Impossible to insert a char into a block without easy detection

(block size would change)
• Impossible to modify a char in a block without easy detection (if

checksums are used)

Pros / Cons for
Stream and Block Ciphers (2)

53

Pros / Cons for
Stream and Block Ciphers (3)

• Pros / cons for block ciphers — Part 2
– - High delay for decoding individual chars

• See example for ‘hello worldxx’ above
– For some E can’t decode even the 1st char before whole k

chars of a block are received

– - High error propagation
• It affects the block, not just a single char

54

Cryptanalysis (1)

• What cryptanalysts do when confronted with
unknown?
Four possible situations w.r.t. available info:

1) C available
2) Full P available
3) Partial P available
4) E available (or D available)

• (1) – (4) suggest 5 different approaches

55

Cryptanalysis (2)

• Cryptanalyst approaches
1) Ciphertext-only attack

• We have shown examples for such attacks
– E.g., for Caesar’s cipher, columnar transposition cipher

2) Known plaintext attack
• Analyst have C and P

– Needs to deduce E such that C=E(P), then finds D

3) Probable plaintext attack
• Partial decryption provides partial match to C

– This provides more clues

56

Cryptanalysis (3)

• Cryptanalyst approaches – cont.
4) Chosen plaintext attack

• Analyst able to fabricate encrypted msgs
– Then observe effects of msgs on adversary’s actions

» This provides further hints

5) Chosen ciphertext attack
• Analyst has both E and C
• Run E for many candidate plaintexts to find P for which E(P) = C

– Purpose: to find KE

57

Symmetric and
Asymmetric Cryptosystems (1)

• Symmetric encryption = secret key encryption
– KE = KD — called a secret key or a private key
– Only sender S and receiver R know the key

– As long as the key remains secret, it also provides
authentication (= proof of sender’s identity)

[cf. J. Leiwo]

58

Symmetric and
Asymmetric Cryptosystems (3)

• Asymmetric encryption = public key encryption (PKE)
– KE ≠ KD — public and private keys

• PKE systems eliminate symmetric encryption
problems
– Need no secure key distribution channel

• => easy key distribution

59

Symmetric and
Asymmetric Cryptosystems (4)

• One PKE approach:
– R keeps her private key KD

– R can distribute the correspoding public key KE to anybody
who wants to send encrypted msgs to her
• No need for secure channel to send KE

• Can even post the key on an open Web site — it is
public!

– Only private KD can decode msgs encoded with public KE!
• Anybody (KE is public) can encode
• Only owner of KD can decode

60

DES (Data Encryption Standard)

61

Background and History of DES (1)

• Early 1970’s - NBS (Nat’l Bureau of Standards) recognized
general public’s need for a secure crypto system

NBS – part of US gov’t / Now: NIST – Nat’l Inst. of Stand’s & Technology

– “Encryption for the masses” [A. Striegel]

– Existing US gov’t crypto systems were not meant to be
made public
• E.g. DoD, State Dept.

– Problems with proliferation of commercial encryption
devices
• Incompatible
• Not extensively tested by independent body

62

Background and History of DES (2)
• 1972 - NBS calls for proposals for a public crypto system

– Criteria:
• Highly secure / easy to understand / publishable /

available to all / adaptable to diverse app’s /
economical / efficient to use / able to be validated /
exportable

§ In truth: Not too strong (for NSA, etc.)

• 1974 – IBM proposed its Lucifer
– DES based on it
– Tested by NSA (Nat’l Security Agency) and the general public

• Nov. 1976 – DES adopted as US standard for sensitive but
unclassified data / communication
– Later adopted by ISO (Int’l Standards Organization)
– Official name: DEA - Data Encryption Algorithm / DEA-1 abroad

63

Overview of DES

§ DES - a block cipher
§ a product cipher
§ 16 rounds (iterations) on the input bits (of P)

§ substitutions (for confusion) and permutations (for diffusion)
§ Each round with a round key

§ Generated from the user-supplied key
§ Easy to implement in S/W or H/W

§ There are 72,000,000,000,000,000 (72 quadrillion) or more
possible encryption keys that can be used.

§ For each given message, the key can be chosen at random
from among this enormous number of keys.

64

Basic Structure

• Input: 64 bits (a block)
• Li/Ri– left/right half of the input block

for iteration i (32 bits) – subject to
substitution S and permutation P

• K - user-supplied key
• Ki - round key:

– 56 bits used +8 unused
(unused for E but often used for error
checking)

• Output: 64 bits (a block)
• Note: Ri becomes L(i+1)
• All basic op’s are simple logical ops

– Left shift / XOR

[Fig. – cf. J. Leiwo]

K1

K16

Input

Input Permutation

L0 R0

S

P

K

R1L1

L16 R16

Final Permutation

Output

65

Generation of Round Keys

key

PC-1

C0 D0

LSH LSH

D1

PC-2 K1

K16
LSH LSH

C1

PC-2

§ key – user-supplied key (input)
§ PC-1, PC-2 – permutation tables

PC-2 also extracts 48 of 56 bits
§ K1 – K16 – round keys (outputs)

§ Length(Ki) = 48
§ Ci / Di – confusion / diffusion (?)
§ LSH –left shift (rotation) tables

[Fig: cf. Barbara Endicott-Popovsky, U. Washington]

66

Problems with DES

§ Diffie, Hellman 1977 prediction: “In a few years,
technology would allow DES to be broken in days.”

§ Key length is fixed (= 56)
§ 256 keys ~ 1015 keys
§ “Becoming” too short for faster computers

§ 1997: 3,500 machines – 4 months
§ 1998: special “DES cracker” h/w – 4 days

§ Design decisions not public
§ Suspected of having backdoors

§ Speculation: To facilitate government access?

67

Double and Triple DES

§ Double DES:
§ Use double DES encryption

C = E(k2, E(k1, P))

§ Expected to multiply difficulty of breaking the encryption
§ Not true!

§ In general, 2 encryptions are not better than one
[Merkle, Hellman, 1981]

§ Only doubles the attacker’s work

68

Double and Triple DES (2)

§ Triple DES:
§ Is it C = E(k3, E(k2, E(k1, P)) ?

§ Not soooo simple!

69

§ Triple DES: Is it C=E(k3, E(k2, E(k1, P))?
§ Tricks used:

D not E in the 2nd step, k1 used twice (in steps 1 & 3)
§ It is:

C = E(k1, D(k2, E(k1, P))
and

P = D(k1, E(k2, D(k1, C))
§ Doubles the effective key length

§ 112-bit key is quite strong
§ Even for today’s computers
§ For all feasible known attacks

Double and Triple DES (3)

70

Security of DES

§ So, is DES insecure?
§ No, not yet

§ 1997 attack required a lot of cooperation
§ The 1998 special-purpose machine is still very

expensive
§ Triple DES still beyond the reach of these 2

attacks
§ But ...

§ In 1995, NIST (formerly NBS) began search for
new strong encryption standard

71

The AES Contest (1)

• 1997 – NIST calls for proposals NIST
– Criteria:

• Unclassifed code
• Publicly disclosed
• Royalty-free worldwide
• Symmetric block cipher for 128-bit blocks
• Usable with keys of 128, 192, and 256 bits

• 1998 – 15 algorithms selected

(Nat’l Institute of
Standards and
Technology)

72

The AES Contest (2)

• 1999 – 5 finalists [cf. J. Leiwo]

– MARS by IBM
– RC6 by RSA Laboratories
– Rijndael (RINE-dahl) by Joan Daemen and Vincent Rijmen
– Serpent by Ross Anderson, Eli Biham and Lars Knudsen
– Twofish by Bruce Schneier, John Kelsey, Doug Whiting, Dawid

Wagner, Chris Hall and Niels Ferguson

• Evaluation of finalists
– Public and private scrutiny
– Key evaluation areas:

security / cost or efficiency of operation /
ease of software implementation

73

The AES Contest (3)

• 2001- … and the winner is …
Rijndael (RINE-dahl)

Authors: Vincent Rijmen + Joan Daemen (Dutchmen)

• Adopted by US gov’t as
Federal Info Processing Standard 197 (FIPS 197)

74

Overview of Rijndael/AES

• Similar to DES – cyclic type of approach
– 128-bit blocks of P
– # of iterations based on key length

• 128-bit key => 9 “rounds” (called rounds, not cycles)
• 192-bit key => 11 rounds
• 256-bit key => 13 rounds

• Basic ops for a round:
– Substitution – byte level (confusion)
– Shift row (transposition) – depends on key length (diff.)
– Mix columns – LSH and XOR (confusion +diffusion)
– Add subkey – XOR used (confusion)

75

Strengths of AES

– Extensive cryptanalysis by US gov’t and
independent experts

– Dutch inventors have no ties to NSA or other US
gov’t bodies (less suspicion of trapdoor)

– Solid math basis
• Despite seemingly simple steps within rounds

76

Comparison of DES & AES (1)
DES AES

Date 1976 1999
Block size [bits] 64 128
Key length [bits] 56 (effect.) 128, 192, 256, or more
Encryption substitution, substitution, shift, bit
Primitives permutation mixing
Cryptographic confusion, confusion,
Primitives diffusion diffusion
Design open open
Design closed open
Rationale
Selection secret secret, but accepted
process public comments
Source IBM, enhan- independent Dutch

ced by NSA cryptographers

77

Comparison of DES & AES (2)

• Weaknesses in AES?
– 20+ yrs of experience with DES eliminated fears of its

weakness (intentional or not)
• Might be naïve…

– Experts pored over AES for 2-year review period

78

Comparison of DES & AES (3)

• Longevity of AES?
– DES is nearly 40 yrs old (1976)

• DES-encrypted message can be cracked in days

– Longevity of AES more difficult to answer
• Can extend key length to > 256 bits (DES: 56)

– 2 * key length => 4 * number of keys
• Can extend number of rounds (DES: 16)

– Extensible AES seems to be significantly better than DES, but..
• Human ingenuity is unpredicatble!
=> Need to incessantly search for better and better

encryption algorithms

Motivation for PKE (1)

• So far - cryptosystems with secret keys

• Problems:
– A lot of keys

• o(n2) keys for n users (n * (n-1) /2 keys)
— if each must be able to communicate with each

– Distributing so many keys securely
– Secure storage for the keys

• User with n keys can’t just memorize them

• Can have a system with significantly fewer keys?
Yes!

Motivation for PKE (2)

• 1976 — Diffie and Hellman — new kind of cryptosystem:
public key cryptosystem = asymmetric cryptosystem
– Key pairs: < kPRIVATE, kPUBLIC>
– Each user owns one private key
– Each user shares the corresponding public key with n-1

remaining users => n users share each public key
– Only 2n keys for n users 2n = n * (1 + n * 1/n)

» Since public key is shared by n people: 1 “owner” + (n-1) others = n
» 1/n since each part “owns” 1/n of the public key

• Even if each communicates with each
• Reduction from o(n2) to o(n) !
• n key pairs are:

<kPRIV-1, kPUB-1 >, <kPRIV-2, kPUB-2>, ..., <kPRIV-n, kPUB-n>

W
h

it
fi

el
d

D

if
fi

e
M

ar
ti

n
 E

.
H

el
lm

an

Characteristics of PKE (1)

§ PKE requirements
1. It must be computationally easy to encipher or

decipher a message given the appropriate key

2. It must be computationally infeasible to derive kPRIV
from kPUB

3. It must be computationally infeasible to determine
kPRIV from a chosen plaintext attack

[cf. Barbara Endicott-Popovsky, U. Washington]

• Key pair characteristics
– One key is inverse of the other key of the pair

• i.e., it can undo encryption provided by the other:
– D(kPRIV, E(kPUB, P)) = P
– D(kPUB, E(kPRIV, P)) = P

– One of the keys can be public since each key does only
half of E ”+” D

• As shown above – need both E and D to get P back

Characteristics of PKE (2)

Characteristics of PKE (3)
• Two E/D possibilities for key pair <kPRIV, kPUB >

– P = D(kPRIV, E(kPUB, P))
• User encrypts msg with kPUB (kPUB” ”locks”)
• Recipient decrypts msg with kPRIV (kPRIV ”unlocks”)

OR
– P = D(kPUB, E(kPRIV, P)) (e.g., in RSA)

• User encrypts msg with kPRIV (kPRIV ”locks”)
• Recipient decrypts msg with key kPUB (kPUB ”unlocks”)

• Do we still need symmetric encryption (SE) systems?
– Yes, PKEs are 10,000+ times (!) slower than SEs

• PKEs use exponentiation – involves multiplication and division
• SEs use bit operations (add,XOR< substitute, shift)–much faster

RSA Encryption (1)
• RSA = Rivest, Shamir, and Adelman (MIT), 1978
• RSA is one of the first practical public-key

cryptosystems and is widely used for secure data
transmission.

• Underlying hard problem:
– Number theory – determining prime factors of a given

(large) number (ex. factoring of small #: 5 à 5, 6 à 2 *3)
– Arithmetic modulo n

• How secure is RSA?
– So far remains secure (after all these years...)
– Will quantum computing break it? TBD

RSA Encryption (2)

• In RSA:
P = E (D(P)) = D(E(P)) (order of D/E does not matter)
– More precisely: P = E(kE, D(kD, P)) = D(kD, E(kE, P))

• Encryption: C = Pe mod n KE = e
– Given C, it is very difficult to find P without knowing KD

• Decryption: P = Cd mod n KD = d

