Fault Injection Attacks

Mark Tehranipoor

Introduction to Hardware Security & Trust
University of Florida
What is Fault Injection?

Fault injection attacks intentionally cause errors in a system in order to compromise the security of the system.
Organization of Presentation

- Taxonomy of Attacks, Threats, and Security
- Non-Invasive Attacks
- Semi-Invasive Attacks
- Invasive Attacks
- Countermeasures
- Practical Fault Injection Attacks
Taxonomy of Attack Classes

- **Non-Invasive Attack**
 - Lowest cost
 - No knowledge of inner workings of target
 - No physical tampering

- **Semi-Invasive Attack**
 - Intermediate cost
 - Some knowledge of inner workings of target
 - Minimal physical tampering required

- **Invasive Attack**
 - High cost
 - Full picture of inner workings of target
 - Best chance of compromising target
Classification of Threats

- **Skilled Outsider**
 - Exploit existing weaknesses
 - Minimal equipment sophistication
 - Black-box understanding of target system

- **Knowledgeable Insider**
 - Advanced education and technical expertise
 - Moderate equipment sophistication
 - Some functional knowledge of target system

- **Funded Organization**
 - Highest education and technical expertise available
 - High equipment sophistication
 - High-Complete functional knowledge of target
Levels of Security

- **Level 1**
 - Bare minimum required protection
 - Minimal defense against glitching and tampering

- **Level 2**
 - Some tamper proofing
 - Some defense against glitch attacks

- **Level 3**
 - Passive system lock-outs
 - Passive tamper proofing

- **Level 4**
 - Active system lock-outs
 - Active tamper detection
Cost of Breaking Protection

<table>
<thead>
<tr>
<th>Level</th>
<th>Cost</th>
<th>Protection Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>$N/A</td>
<td>Open book to attacker</td>
</tr>
<tr>
<td>Low</td>
<td>$1,000</td>
<td>Security through Obscurity</td>
</tr>
<tr>
<td>Med-Low</td>
<td>$3,000</td>
<td>Regular Microcontroller</td>
</tr>
<tr>
<td>Med</td>
<td>$30,000</td>
<td>Secure Microcontroller</td>
</tr>
<tr>
<td>Med-High</td>
<td>$150,000</td>
<td>ASIC, Secure FPGA, Smartcard</td>
</tr>
<tr>
<td>High</td>
<td>$1,000,000</td>
<td>Secure ASIC</td>
</tr>
</tbody>
</table>
Design for Security

- **Cost of a security breach**
 - Loss of customers and reputation
 - Fines from government
 - Loss of bottom line

- **Value of secured data to attacker**
 - Commercial value
 - Strategic value
 - Profitability

- **Cost of security implementations**
 - Price increase
 - Area and complexity increase
 - Power consumption increase
Overview of Non-Invasive Attacks

- **Black Box Attacks**
 - Brute Force Attack
 - Software Attack
 - Data Remanence

- **Side Channel Attacks**
 - Timing Attack
 - Power Analysis Attack
 - Used in conjunction with Fault Injection

- **Fault Injection Attacks**
 - Clock Glitching
 - Voltage Glitching
 - Used to speed up Black Box Attacks
Black Box Attacks

- **Brute Force**
 - Memory verify guessing
 - Cryptographic key guessing
 - Cyphertext-to-Plaintext Guessing

- **Software Exploits**
 - Undocumented functions
 - Security function flaws
 - Test interface flaws

- **Data Remanence**
 - Lower temperature to -20°C or less
 - Volatile memory retains data
 - Read volatile memory contents
Side Channel Attacks

- **Timing Attack**
 - Number of cycles as a function of subroutine
 - Number of cycles as a function of subroutine’s outcome
 - Number of cycles as a function of secret information
 - Can be used to reverse engineer the system
 - Can be used to reduce guesses for brute force

- **Power Analysis Attack**
 - Current consumption as a function of subroutine
 - Current consumption as a function of subroutine’s outcome
 - Current consumption as a function of secret information
 - Can be used to reverse engineer the system
 - Can be used to reverse engineer data flow
 - Can be used to reduce guesses for brute force
Side Channel Attack Setup

I/O Interface → Target IC → Current Sense

Measurement PCB

Interface FPGA/MCU → Voltage Source → Oscilloscope

Computer
Fault Injection Attacks

- **Clock Glitching**
 - Burst of double clock speed – timing critical
 - Requires knowledge gained from side-channel attack
 - Prevent flip-flops from latching correct data
 - Prevent security fuses from setting properly
 - Could cause skipping instructions

- **Voltage Glitching**
 - Burst of high or low voltage – timing critical
 - Requires knowledge gained from side-channel attack
 - Force VDD < VTH
 - Prevent security fuses from setting properly
 - Change control logic outputs
 - Change memory amplifier outputs
Overview of Semi-Invasive Attacks

- Backside Decapsulation
 - Backside Imaging
 - Laser Scanning
 - Reverse Engineering

- Fault Injection Attacks
 - Local Heating
 - Flash Glitching
 - Laser Glitching
Backside Decapsulation

Source: http://freudlabs.com/sample_preparation
Backside Decapsulation

- **Backside Imaging**
 - Substrate penetrated by infrared light
 - Transistor layout is visible through substrate
 - Reverse engineering of block-level functionality

- **Laser Scanning**
 - Optical Beam Induced Current (Unpowered IC)
 - Light-Induced Voltage Alteration (Powered IC)
 - See memory structures and read stored values

- **Reverse Engineering**
 - Determine size of data bus
 - Determine location of control logic
 - Determine location of security logic
Backside Imaging

Example of Laser Scan

Fault Injection Attacks

- **Local Heating**
 - High power laser is used to selectively heat small areas
 - Hot enough to change VTH but not hot enough to damage
 - Trial and error with location is used to determine glitches

- **Flash Glitching**
 - Magnified camera flash can cause mass glitching
 - Tinfoil masks created to cause selective glitching
 - Trial and error with location and timing is used to determine glitches

- **Laser Glitching**
 - Infrared laser is used to selectively glitch small areas
 - Trial and error with location and timing is used to determine glitches
 - Process is more precise than Flash Glitching
Overview of Invasive Attacks

- Reverse Engineering
 - Decapsulation
 - Layout Reconstruction
 - Memory Extraction

- IC Modification
 - Laser Cutting
 - Test Point Creation
 - Wire Bonding

- Micro Probing
 - Eavesdropping
 - Signal Injection
 - Fault Injection
Decapsulated IC

Source:
Reverse Engineering

- **Decapsulation**
 - Use of acids to remove layers one by one
 - Provide physical access to all sections of IC
 - Provide knowledge about design of IC

- **Layout Reconstruction**
 - Image each layer before removing it
 - Build netlist from all images
 - Reverse engineer all functions of IC

- **Memory Extraction**
 - Read contents of ROM with reconstruction
 - Scan contents of SRAM
 - Scan contents of EEPROM/FLASH
IC Modification

- **Laser Cutting**
 - Not completely destructive
 - Selective exposure of lower layers
 - Selectively disconnect nets

- **Test Point Creation**
 - Cut test points into IC
 - More spots for micro probing below top layer
 - See more signals on more nets

- **Wire Bonding**
 - Use laser cutting to expose net
 - Cut test point for bonding target
 - Modify circuit paths as needed

Example of Laser Cutting

Micro Probing

- **Eavesdropping**
 - Listen to control lines
 - Listen to data bus
 - Full bypass of all protections

- **Signal Injection**
 - Insert control signals
 - Modify memory contents
 - Forcefully bypass security controls

- **Fault Injection**
 - High voltage between two probes
 - Destroy transistors
 - Destroy traces
Sample Micro Probing Station

Source: Skorobogatov. Semi-Invasive Attacks. Page 84
Countermeasures
Overview of Exploits

- Brute Force Attacks
- Software Exploits
- Data Remanence
- Timing Attacks
- Power Analysis Attacks
- Clock Glitching
- Voltage Glitching
- Reverse Engineering
- IC Modification
- Micro Probing
- Memory Attacks
- Optical Glitching
Brute Force Attacks

- Do not return piecemeal Verify results
- Large number of possible combinations
- Encryption
Software Exploits

- Software Quality Assurance
- Design for security
- Stay one step ahead of attackers
- Exception handling
- No readbacks on memory
- Destroy programming interface after use
Data Remanence

- Erase all volatile memory on power-up
- Temperature sensor monitoring
- Erase all memory on out-of-spec temperature
Timing Attacks

- Make all outcomes of subroutine same number of cycles
- Insert noops where needed
- Randomize response times
Power Analysis Attacks

- Intentionally noisy power signal
- Make operations consume similar power
- Increase the signal-to-noise ratio
Clock Glitching

- **Internal oscillator** for bootloader code
- **Internal oscillator** for secure functions
- Make security fuses faster than control logic
- Asynchronous logic
Voltage Glitching

- Internal brownout reset
- Different voltage threshold for security fuses
Reverse Engineering

- Security through Obscurity
- Additional metal layers to cover design
- Re-mark or un-mark all ICs on PCB
- Glue logic
- Small transistor size
- Use of ASICs to replace glue logic on PCB
IC Modification

- Metal protection layers on top
- Critical signals routed on top of important targets
- Tamper sensors in metal layers
Micro Probing

- Tamper sensors in metal layers
- Small transistor size
- Internal shielding
- Top level shielding
- Security through obscurity
- Glue Logic
Memory Attacks

- UV Protection
- Temperature lockout sensors
- Tamper sensors to detect decapsulation
- Close proximity between security fuses and memory
Optical Glitching

- Protective metal layers to block optical penetration
- Tamper sensors in metal layers
- UV Protection
- IR Protection
- Proximity of security fuses and control logic to memory
Practical Fault Injection Attacks
Overview of Attacks

- **Bumping**: Extract contents of protected memory with Verify
 - Step 1: Backside Decapsulation
 - Step 2: Backside Imaging
 - Step 3: Side Channel Attack
 - Step 4: Laser Glitching Location
 - Step 5: Laser Glitching Timing
 - Step 6: Brute Force Attack

- **Attacks on Cryptographic Algorithms**
 - Attack RSA Repeated Squaring – Retrieve Secret Key
 - Bellcore Attack – Find Prime Factor
 - Sign Change Fault – Elliptic Curve System Attack
 - Directly attack cryptoprocessor
Step 1: Backside Decapsulation

- Use dremel tool to remove backside of outer casing
- Clean surface of exposed substrate material
- Install the IC upside-down to a test interface board

Source: Skorobogatov. Semi-Invasive Attacks. Page 75
Step 2: Backside Imaging

- Use 1000nm infrared light and an optical microscope
- Identify the location of the EEPROM/FLASH memory
- Identify the locations of the memory control logic
- Determine memory bus width

Source: Skorobogatov. Optical Fault Masking Attacks. Page 4
Step 3: Side Channel Attack

- Set up a power analysis attack using a 10ohm sense resistor
- Perform a Verify function on a dummy input
- Monitor transient current to reverse engineer the process
- Determine packet size of Verify function

Source: Skorobogatov. Flash Memory Bump Attacks. Page 7
Step 4: Laser Glitching Location

- Set Verify to a pattern of all ‘1’ or all ‘0’
- Find a location in the memory control logic to attack
- Keep trying until your verify pattern succeeds

Source: Skorobogatov. Flash Memory Bump Attacks. Page 5
Step 5: Laser Glitching Timing

- Configure Laser timing to attack all but one block
- Verify that your timing delivers repeatable results
- Maximum unmasked length is the data bus width
- The fewer bits you can unmask at a time the better

Source: Skorobogatov. Flash Memory Bump Attacks. Page 12
Step 6: Brute Force Attack

- Perform a brute force attack on the first unmasked segment
- Unmask the next segment and repeat
- Repeat until all segments are determined

Example: Verification of a 1024 bit memory on an 8-bit bus
- Traditional Brute Force = 2^{1024} Combinations
- Bump Attack = $128 \times 2^8 = 2^{15}$ Combinations

Example: Verification of a 16384 bit memory on a 16-bit bus
- Traditional Brute Force = 2^{16384} Combinations
- Bump Attack = $1024 \times 2^{16} = 2^{26}$ Combinations
To the Victor go the Spoils:

- Commercial IP theft
- Recovery of cryptographic keys
- Modify software to insert exploits
- See plaintext messages
- Use stolen keys to extract encrypted data
Questions

Questions?
Works Cited

- Skorobogatov, Sergei. Flash Memory ‘Bumping’ Attacks.
- Skorobogatov, Sergei. Optical Fault Masking Attacks.